- 673 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2018/08/26(日) 14:00:52.95 ID:6kXdT+iQ.net]
- >>609
つづき この事から、古典群の表現の最も基本的な例として本書で扱われている、「回転群の表現が、その普遍被覆群Spin(3)=SU(2)のリー環su(2)の表現に還元される事」、また「ローレンツ群の単位元の連結成分、即ち固有ローレンツ群、の表現が、その普遍被覆群SL(2,C)のリー環sl(2,C)の表現(更に、sl(2,C) はsu(2) の複素化であるからsu(2)の表現)に還元される事」が、極めて自然に理解されると思う。 更に、最終章の球関数の理論では、「ラプラスの球関数がSO(3)の既約表現の表現空間として、球面ラプラシアンのスペクトル分解を導く」ことの明確な根拠が与えられており、等質空間上の正則表現を既約表現に分解することがフーリエ展開の本質であることの「一つの原型」が、この様な入門書のレベルで提示されていて感心させられる。 本書の初版発行は1960年であるが、その内容は決して古くなっていない。 連続群論には、ポントリャーギンの本、村上先生の本(「連続群論の基礎
|

|