[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 10:39 / Filesize : 506 KB / Number-of Response : 725
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



91 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2018/01/01(月) 19:50:40.49 ID:dCRrvhl7.net]
Thomae(「ポップコーン」)関数の絵が面白いので、ご紹介。
https://arxiv.org/abs/1702.06757
https://arxiv.org/pdf/1702.06757
Number-theoretic aspects of 1D localization: "popcorn function" with Lifshitz tails and its continuous approximation by the Dedekind eta S. Nechaev, K. Polovnikov (Submitted on 22 Feb 2017 (v1), last revised 26 Feb 2017 (this version, v2))
(抜粋)
We discuss the number-theoretic properties of distributions appearing in physical systems when an observable is a quotient of two independent exponentially weighted integers.

The spectral density of ensemble of linear polymer chains distributed with the law ?fL (0<f<1),

where L is the chain length, serves as a particular example.

At f→1, the spectral density can be expressed through the discontinuous at all rational points, Thomae ("popcorn") function.

We suggest a continuous approximation of the popcorn function, based on the Dedekind η-function near the real axis.

Moreover, we provide simple arguments, based on the "Euclid orchard" construction, that demonstrate the presence of Lifshitz tails, typical for the 1D Anderson localization, at the spectral edges.

We emphasize that the ultrametric structure of the spectral density is ultimately connected with number-theoretic relations on asymptotic modular functions.

We also pay attention to connection of the Dedekind η-function near the real axis to invariant measures of some continued fractions studied by Borwein and Borwein in 1993.
(引用終り)






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef