[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 10:39 / Filesize : 506 KB / Number-of Response : 725
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



76 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2018/01/01(月) 17:11:49.95 ID:dCRrvhl7.net]
>>71 つづき

and
I(n, xn,m) ∩ Kc ⊂ f−1((f(x) − ε, f(x) + ε)).
Hence, f|Kc is continuous at x.

To prove the last part of the theorem, note first that (iii) implies (ii) even
without the restriction that J contains no interval. Now suppose that J contains
no interval and that f,K are as in (ii). Define
(1) G(x) = lim sup t→x,t∈Kc f(t)
and
(2) g(x) = G(x) when G(x) is finite,
  or = f(x) otherwise.
In particular, it follows from (ii) that f|Kc = g|Kc . Let x ∈ Kc and ε > 0.
According to (ii) there is a δ > 0 such that
(3) |g(y) − g(x)| = |f(y) − f(x)| < ε/2
whenever y ∈ (x − δ, x + δ) ∩Kc. If z ∈ (x − δ, x + δ) ∩K, then the assumption
that K can contain no nonempty open set implies the existence of a sequence
{zn : n ∈ N} ⊂ (x − δ, x + δ) ∩ Kc
such that f(zn) → G(z). Hence, by (3), G(z) is finite, so g(z) = G(z) and
|g(z) − g(x)| ? ε/2 < ε. Therefore, g is continuous at x. QED

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef