より詳細な問題[編集] さらに精密な予想として、1976年のサージ・ラング(Serge Lang)とハイル・トロッター(ドイツ語版)(Hale Trotter)によるラング・トロッター予想(Lang?Trotter conjecture)は、公式の中に現れるフロベニウス元のトレースである値 ap が、素数 p に対し決まると、漸近的な数が存在すると言う予想である。[12] 典型的な例(虚数乗法を持たず、かつ trace ≠ 0)では、X についての p に対する数値は、ある特別の定数 c が存在して、漸近的に