[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 10:39 / Filesize : 506 KB / Number-of Response : 725
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



238 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2018/01/07(日) 15:03:48.24 ID:2l42E8SE.net]
>>216 追加

www.math.shimane-u.ac.jp/~tosihiro/agora.pdf
図形の大きさや複雑さを測る 公開講座数学アゴラ 中西敏浩 島根大 2001年12月
(抜粋)
ハウスドルフ(Hausdorff)次元というのは図形の複雑さを測る一つの量です。

マンデルブロート集合の境
界はすごく複雑な形状を呈しているので、そのハウスドルフ次元は2 ではないかと予想され、それを証明す
ることが長年の懸案だったのですが、1998年に宍倉光広氏(現・広島大学)によってついに解かれました。
定理. マンデルブロート集合の境界のハウスドルフ次元は2 である。
さらに宍倉氏は、マンデルブロート集合の境界上にあるほとんどの点c についてfc(z) = z^2 + c の
ジュリア集合のハウスドルフ次元が2 であることも示しています。
 面積を測るという問題に戻ると、マンデルブロート集合の境界の面積が0 であるかどうかはまだわ
かっていないようです。また特別な場合を除いて有理関数のジュリア集合の面積が(もしそれがリーマン球
面と一致していなければ)0 であるかどうかという問題も未解決のままです。

数値計算で入力されるのはその近似値1.7320508... です。そ
して反復合成の際に入力するデータも実際の値の近似値に過ぎません。だから反復合成列が、初期値や途中
で入力されるデータについて非安定的ならば、数値実験の結果への信頼度は低くなります。非安定的な点の
存在は避けられないとしても、それらがなす集合はほとんど無視できるぐらい非常に小さいものであってほ
しいという希望があります。なぜなら、もしそうなら数多くの初期条件の下での実験を繰り返せば、それら
の結果のほとんどのものはある程度信頼できるものとなるからです。ジュリア集合の面積が0 であること
をしめすことに意義がこうした点にあります。
複素関数の反復合成の性質を研究する分野を「複素力学系」と呼ぶということでしたが、ここでは有理
関数の場合しか扱いませんでした。現在ではもっと広いクラスの関数((多変数も含めて)超越整関数や有
理形関数)の複素力学系が研究されています。本格的に勉強したい方のために[9] を






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef