[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 10:39 / Filesize : 506 KB / Number-of Response : 725
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました



205 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2018/01/06(土) 12:24:44.27 ID:sJCr7ecA.net]
>>193 つづき

1)(>>190 PDFより)”有理数の点で不連続, 無理数の点で、the set of all non-Liouville numbersで微分可能、the set of Liouville numbersで微分不可(勿論リプシッツ連続ではないが連続)となるf : R → R が存在する”は正しい
2)これは”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”の別証明になっている
3)ところで、スレ主は頭が悪いので、定理1.7を場合分けして、”R−Bf が内点を持たない閉集合の高々可算和で被覆できる”けれども、R−Bf がR中で稠密な場合を考える。
4)これはQを想定した場合。この場合は、「f : R → R は存在しない!」が、定理1.7の直接の帰結である。

5)R−Bf がR中で稠密な場合を更に、4つに細分する
 a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる)
 b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*)
 c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
 d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
(注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと)

6)系1.8は、定理1.7中の上記a)のみ。a)のみが、既存の別証明がある。しかし、b)からd)の3ケースは、既存の証明は見つかっていない
7)で、系1.8が正しいからといって、定理1.7が正しいことの証明の代用にはならない。だから、系1.8を出発点に論じるのは如何なものかという気がするよ

以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef