現実のQと無理数(R \ Q)とでは、具体的なQと無理数との相性のような絡み合いがあって Liouville numbersのように、有理数でよく近似できる数(それは微分不可)で 一方、”Diophantine approximation of algebraic irrationals, called Roth’s Theorem”のように、近似限界のある数(代数的数の性質)(それは微分可能)で 無理数にも個性があるんです(下記「Modifications of Thomae’s function」)
だが、そういうことを全部抽象化した結果が、定理1.7なんですよね まあ、定理1.7はものすごい強い結果だと・・・本当に成立しているのか? ((>>189)H. M. Sengupta and B. K. Lahiriも、そういう結果なんですけどね(^^ )
(>>90より) https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf Modifications of Thomae’s function and differentiability, (with James Roberts and Craig Stevenson) Amer. Math. Monthly, 116 (2009), no. 6, 531-535. (抜粋) P534 We finish by remarking on some obvious consequences of the previous propositions. First, for k <= 2, T(1/n^k ) is nowhere differentiable. By Roth’s Theorem, if α(an) > 2, T(ai ) is differentiable on the set of algebraic irrational numbers. T(1/n^9) is differentiable at all the algebraic irrationals, e, π, π^2, ln(2), and ζ(3), and not differentiable on the set of Liouville numbers. Finally, if α(ai ) = ∞, T(ai ) is differentiable on the set of all non-Liouville numbers. Since the set of Liouville numbers has measure zero, T(ai ) is differentiable almost everywhere. (引用終り)