[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/11 00:00 / Filesize : 506 KB / Number-of Response : 688
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む48



587 名前:132人目の素数さん mailto:sage [2017/12/25(月) 18:38:17.34 ID:U1NU7yFp.net]
>>526
>リウヴィル数は、非可算集合、実数内で稠密で、ルベーグ測度は 0 であるから、内点を持たない
>リウヴィル数の各点は、閉集合だと思うが、それで良いかな?

息をするように間違えるゴミクズ。

リウヴィル数の全体を L と置く。お前の持ち出した例では、L ⊂ R−B_f が言えているに過ぎないので、
このままでは例の定理に帰着できず、全く反例になってない。

では、R−B_f ⊂ L が成り立つと仮定した場合はどうか。ここでは一般的に、
R−B_f ⊂ L が成り立つような任意の写像 f:R→R について考えることにする。

L は内点を持たない集合で、L は非可算無限集合である。
よって、もし L 自体が閉集合なら、L は内点を持たない閉集合「1つ」となるので、

「内点を持たない閉集合 F_i の高々可算無限和」… (1)

として F_1=L, F_i=φ (i≧2) を採用すれば、R−B_f ⊂ L という包含は

R−B_f ⊂ F_1

を意味することになる。特に、R−B_f は(1)の被覆ができていることになり、例の定理が適用できる。
しかし、L は R 上で稠密なので、既に議論されたことと同じことをすれば矛盾し、例の定理は間違いとなる。
しかし、実際には、L 自体は全く閉集合ではないので、L そのままでは、R−B_f について(1)の被覆が
出来ていることにならず、スレ主の目論見は失敗に終わる。

[続く]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef