[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/11 00:00 / Filesize : 506 KB / Number-of Response : 688
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む48



557 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2017/12/24(日) 20:59:06.39 ID:Q5UHveEY.net]
>>497 関連

無理数で微分可能で、有理数のみ微分不可能という
函数の構成があったので、貼っておく(^^

www.mathcounterexamples.net/a-continuous-function-not-differentiable-at-the-rationals-differentiable-elsewhere/
ANALYSIS A CONTINUOUS FUNCTION NOT DIFFERENTIABLE AT THE RATIONALS BUT DIFFERENTIABLE ELSEWHERE NOVEMBER 30, 2014 JEAN-PIERRE MERX Math Counterexamples
(抜粋)
We build here a continuous function of one real variable whose derivative exists on R?Q and doesn’t have a left or right derivative on each point of Q.

As Q is (infinitely) countable, we can find a bijection n→rn from N to Q. We now reuse the function f defined here.
www.mathcounterexamples.net/a-differentiable-function-except-at-point-with-bounded-derivative
Recall f main properties:

This proves that hh is differentiable at aa with h′(a)=limn→+∞h′n(a). For a∈Q, we can find p∈N with a=rp.
Following a similar proof than above, the function lp:x→h(x)−up(x) is differentiable at a.
As f does not have left and right derivatives at 00, upup does not have left and right derivatives at a.
finally, the equality h=lp+up implies that hh also does not have left and right derivatives at a.

Conclusion:
the function h is differentiable at all irrational points but does not have left or right derivative at all rational points.
(引用終り)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef