[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/11 00:00 / Filesize : 506 KB / Number-of Response : 688
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む48



503 名前:132人目の素数さん mailto:sage [2017/12/23(土) 16:53:18.05 ID:ANqzVc/X.net]
ここで、おバカのスレ主にも分かりやすいように、例の定理から即座に従う、
以下の定理を紹介しておく。(ここでは「定理2」と書くことにする)

――――――――――――――――――――――――――――――――――――――――――
定理2:
f:R→R は各点で微分可能とする。このとき、ある x∈R に対して Lips(x, f) は真である。( Lips(x, f) の定義は >>406 )
――――――――――――――――――――――――――――――――――――――――――

なぜこの定理2が成り立つかというと、f が各点で微分可能なら B_f=R となるので、
R−B_f=φ となり、よって R−B_f は内点を持たない閉集合の高々可算和で被覆できるので、
例の定理が適用できて、ゆえに「定理2」が成り立つのである。一方で、スレ主が引用した
―――――――――――――――――――――――――――――――――――――――
f:R→R は、任意の x∈R に対して Lips(x,f) が真であるとする。
このとき、任意の x∈R に対して f'_+(x) は有限値である。
(ちなみに、任意の x∈R に対して Af(x) は有限値である、という主張も言える。)
―――――――――――――――――――――――――――――――――――――――
もしくは

>”系 1.5 任意の f : [0, 1] ?→ R に対して集合 {x ∈ (0, 1) | f′(x) = ∞} は零集合である.”

という主張からは、定理2は全く出て来ない。もし出てくるというのなら、実際にやってみよ。
スレ主の引用した主張をそのまま適用しても出てこないし、対偶を取っても出てこない。

ついでに言うと、スレ主の引用した主張とは無関係に定理2を直接的に示そうと思っても、
スレ主の力量では それさえも不可能のはず。なぜなら、定理2は「例の定理」と同じく、
ベールのカテゴリ定理を経由するくらいしか証明手段が無い(はず)だからだ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef