- 478 名前:ち f は x で微分可能.
(2) D+f(x) = D?f(x) ∈ R, D?f(x) = ∞, D+f(x) = ?∞. (3) D?f(x) = D+f(x) ∈ R, D+f(x) = ∞, D?f(x) = ?∞. (4) D±f(x) = ∞, D±f(x) = ?∞. 注意 1.3 この定理では,f の連続性や可測性は仮定する必要がない.歴史的には最初にDenjoy, Young が独立に連続関数について示し,次に Young が可測関数にまで拡張し,最後に Saks が 任意の関数について証明した.証明は例えば [2] の §3.5 を参照. Denjoy-Young-Saks の定理の威力を実感するため,この定理から直ちに従う 2 つの系を述 べる. 系 1.5 任意の f : [0, 1] ?→ R に対して集合 {x ∈ (0, 1) | f′(x) = ∞} は零集合である. 証明 f ′(x) = ∞ なる x ∈ (0, 1) では Denjoy-Young-Saks の定理の (1), (2), (3), (4) のいずれも 成立しないことから系が従う. http://www.artsci.kyushu-u.ac.jp/~ssaito/jpn/maths/talks.html 研究集会での講演 36.典型的連続関数の Dini 微分 (2009/10/23) [日本語講演,60 分] 実解析学シンポジウム 2009 @ 城西大学 坂戸キャンパス 関連文書:アブストラクト,報告集 つづく [] - [ここ壊れてます]
|

|