- 286 名前:可算個の合併(Fσ-集合)である。”
とあるけど 単純に、リプシッツ連続とリプシッツ不連続にも、この(Gδ-集合)と(Fσ-集合)の理論を類推適用してないかな? で、標準テキストでは、「リプシッツ連続とリプシッツ不連続に、類推適用して良いとなっていない」ように思うが・・ https://ja.wikipedia.org/wiki/%E4%B8%8D%E9%80%A3%E7%B6%9A%E6%80%A7%E3%81%AE%E5%88%86%E9%A1%9E 不連続性の分類 (抜粋) 関数の不連続点の集合 函数の連続点の全体からなる集合は開集合の可算個の交わり(Gδ-集合)である。また不連続点の全体は閉集合の可算個の合併(Fσ-集合)である。 (引用終わり) [] - [ここ壊れてます]
|

|