- 26 名前:132人目の素数さん mailto:sage [2017/12/14(木) 18:32:53.52 ID:JQcHE8p2.net]
- [第3段]:無理数 c_1∈(S_1)∩(S_2) を任意に取る。A=d/2 となって |f(a)−f(b)|≧ε>d=2A となることに着目し、三角不等式に注意すると、
任意に、すべての正整数nについて条件 |c_1−x_{1,n}|<M を満たし、かつ或る正整数 m'_1 に対して x_{1, m'_1}=a であり、 すべての n≠m'_1 なる正整数nに対して x_{1,n}≠b となるようなIの点列 { x_{1,n} } が取れる。 そして、正の単調減少列 { ε_{1,n} }、及び或る非負実数 μ_1 がそれぞれ定まって、{ ε_{1,n} } は μ_1 に収束し、 このとき任意の正整数nに対して μ_1≦|f(c_1)−f(x_{1,n})|<ε_{1,n}<A となる。 同様に、無理数 c_2∈(S_1)∩(S_2) を任意に取れば、任意に、すべての正整数nについて条件 |c_2−x_{2,n}|<M を満たし、 かつ或る正整数 m'_2 に対して x_{2, m'_2}=b であり、すべての n≠m'_2 なる正整数nに対して x_{2,n}≠a となるような Iの点列 { x_{2,n} } が取れる。そして、正の単調減少列 { ε_{2,n} }、及び或る非負実数 μ_2 がそれぞれ定まって、 { ε_{2,n} } は μ_2 に収束し、このとき任意の正整数nに対して μ_2≦|f(c_2)−f(x_{2,n})|<ε_{2,n}<A となる。 [第4段]:従って、c_1=c_2 として、点 c∈(S_1)∩(S_2) を任意に取れば、任意に、すべての正整数nについて条件 |c−x_{1,n}|<M を満たし、 かつ或る正整数 m_1 に対して x_{1, m_1}=a であり、すべての n≠m_1 なる正整数nに対して x_{1,n}≠b となるような Iの点列 { x_{1,n} } が取れる。更に、任意に、すべての正整数nについて条件 |c−x_{2,n}|<M を満たし、 かつ或る正整数 m_2 に対して x_{2, m_2}=b であり、すべての n≠m_2 なる正整数nに対して x_{2,n}≠a となるような Iの点列 { x_{2,n} } が取れる。そして、各 i=1,2 に対して正の単調減少列 { ε_{i,n} }、及び或る非負実数 μ_i がそれぞれ定まって、 { ε_{i,n} } は μ_i に収束し、このとき任意の正整数nに対して μ_i≦|f(c)−f(x_{i,n})|<ε_{i,n}<A となる。
|

|