[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/11 00:00 / Filesize : 506 KB / Number-of Response : 688
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む48



164 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2017/12/16(土) 23:46:40.92 ID:/2xvBEHK.net]
>>127
<いままで読み込んだ調査文献からの暫定結論(修正版)>

1.(>>97より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.

よって、 f は(a, b) 上でリプシッツ連続である.”

ここで、"Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }","R−Bf"において
「< +∞」の解釈が問題となる

2."R−Bf"が、単純にリプシッツ”不”連続点ではなく、実質的に不連続点の集合と考えるならば、
 「内点を持たない閉集合の高々可算和で被覆できる」は、つまり変形トマエ関数などの有理点での不連続点で、それは”孤立点のみから成る離散集合 (discrete set) ”とできる。
 (繰返すが、この場合、上記定義のリプシッツ”不”連続は、実質通常の不連続点と解することができる。)

3.そうすると、>>110 の”THEOREM: Let g be continuous and discontinuous on sets of points that are each dense in the reals. g fails to satisfy a pointwise Lipschitz condition, a pointwise Holder condition, or even any specified pointwise modulus of continuity condition on a co-meager set.”
 が適用できて
 co-meager setは、リウヴィル数全体からなる集合と同様で、”非可算集合であり、実数内で稠密であるが、1次元ルベーグ測度は 0 ”となる
 この場合、実数内で稠密であるから、”リプシッツ連続である区間(a, b) を取ること”はできない。

https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%97%E3%82%B7%E3%83%83%E3%83%84%E9%80%A3%E7%B6%9A
リプシッツ連続
(抜粋)
定義

実多変数の実数値函数に対して、これが成り立つのは、任意の割線の傾きの絶対値が K で抑えられるときであり、かつそのときに限る。函数のグラフ上の一点を通る傾き K の直線全体の成す集合は円錐を成すから、したがって函数がリプシッツ連続であるための必要十分条件は、その函数のグラフが至る所この錐のまったく外側にあることである。
(引用終り)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef