- 158 名前:異なる数学的対象を意味するものとなる[1]。
つまり、1 と {1} とは同じものではないし、空集合のみからなる単項集合 {?} は 空集合 ? ではない。また、例えば、{{1, 2, 3}} のような集合も唯一の集合(それ自体は単集合ではないが)を元として持つ単集合である。 単集合であることと、その集合の濃度が 1 であることは同値である。自然数の集合論的構成において、自然数の 1 とは単集合 {0} のことと定義される。 公理的集合論において、対の公理からの帰結として単元集合の存在が導かれる。 即ち、任意の集合 A に対して、A と A に対して対の公理を適用すれば {A, A} なる集合の存在が保証されるが、これは A のみを元に持ちそれ以外の元は持たないから、単元集合 {A} に他ならない。 ここで A は任意の集合でよい、といっても集合がそもそもまったく存在しない場合には意味がないが、空集合の公理があれば少なくとも空集合 ? は集合になるから、A = ? ととって先の議論は正当化できる。 任意の集合 A と単集合 S に対し、A から S への写像はちょうど一つだけ存在する(それは A の各元を S の唯一の元へ写すものである)。従って任意の単元集合は集合の圏にける終対象である。 つづく [] - [ここ壊れてます]
|

|