[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 04/11 00:00 / Filesize : 506 KB / Number-of Response : 688
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む48



129 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2017/12/16(土) 15:32:29.99 ID:/2xvBEHK.net]
>>111

フルペーパーまではゲットできず(^^
まあ、Abstractだけでも
www.calmathsoc.org/bulletin/article.php?ID=B.1957.49.31
Bulletin of the Calcutta Mathematical Society

Article Details
Article ID B.1957.49.31
Title A Note on Derivatives of a Function
Author H.M. Sengupta & B.K. Lahiri
Issue Vol. 49, No. 4, - 1957
Article No. 31, Pages 189-191

Abstract
Recently Prof. Fort Jr. (1951) has proved a striking theorem regarding the differentiability of a function which is discontinuous over an everywhere dense set and continuous over an everywhere dense set.
He has proved that if the set of points where the function is discontinuous be everywhere dense and if there be an everywhere dense set of points where f(x) is continuous, then the set of points (if it exists) where the function is differentiable is a set of the first category.
He proves this by showing that the set of points where f(x) is continuous but not differentiable is a residual set.
In this note it is a proposed to show that in case there is an everywhere dense set of points when f(x) is discontinuous and an everywhere dense set of points where f(x) is continuous, then there always exists a residual set at each point of which at least one of the four derivatives D^+f, D_+f, D^-f is infinite.
In this connection, we refer to an article by W.H. Young (1903) [see Hobson, 1927] where it is proved that for any function f(x) defined in a

Latex Reference [BiBTeX format]

@ARTICLE { [citing tag of your choice],
? ?AUTHOR = {H.M. Sengupta & B.K. Lahiri},
? ?TITLE = {A Note on Derivatives of a Function},
? ?YEAR = {1957},
? ?JOURNAL = "Bulletin of Cal. Math. Soc.",
? ?VOLUME = {49},
? ?NUMBER = {4},
? ?PAGES = {189-191} }
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<506KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef