- 518 名前:滑ヨ関数は、ゼータの非自明零点の対相関関数と同じである」ことに気がついたそうです。
1998年、コンリーはクリティカルライン上のゼータ関数の値の2k乗平均の値に関係するある係数がk=4の場合24024であることを予想しました。キーティングとスネイスはユニタリランダム行列の特性多項式の値の2k乗平均に登場するある係数を求め、k=4の場合24024であることを導きました。これはゼータ自身と作用素の特性多項式の対応を示しています。 これ以降、ゼータ関数の値の平均値の理論とランダム行列の特性多項式の値の関係などが熱心に調べられているそうです。 (引用終り) [] - [ここ壊れてます]
|

|