- 358 名前:現代数学の系譜 工学物理雑談 古典ガロア理論も読む mailto:sage [2017/10/09(月) 15:30:46.08 ID:Lw7abe+X.net]
- >>310
>その場合は決定番号がどの値をとっても0を当てることが可能だということですね >それでスレ主は何を根拠に数当てができないと言いたいの? 君はかなり分っているようだね 言いたいこと: "40 rio2016.2ch.net/test/read.cgi/math/1503706544/597-598時枝記事そのままの入れ方で、決定番号が、1からnの間に来る確率は、0(ゼロ)の証明"(>>11より) 「つまり、決定番号が、1からnの間に来る確率は、0(ゼロ)。 これは、各列共通で、どの列でも成り立つ。」 <補足> 1.一つの同値類をUとし、Uの部分集合で、代表数列rに対する代表番号dに関連した部分集合を考えよう U_1⊂U_2⊂・・⊂U_d⊂・・⊂U ここに、U_1は決定番号1の集合、U_2は決定番号2までの集合、U_dは決定番号1〜dの元の集合とする。 2.ここで、U_dを考えて、代表数列rで r= (r1,r2,r3 ,・・,r_d-1,r_d,r_d+1 ,r_d+2 ,・・) 一方、任意の数列s∈U_dは s= (s1,s2,s3 ,・・,s_d-1,r_d,r_d+1 ,r_d+1 ,・・) 3.ここに、s_d-1とr_d-1とが一致して、決定番号がd-1に成る確率は0 (∵ランダムに選んだ二つの実数が一致する確率は0) 4.同じことは、d+1など、dより大きい有限なすべての代表番号について成り立つ 5.従って、一つの同値類全体Uの場合、”決定番号が、1からnの間に来る確率は、0(ゼロ)”が言える これが言えると、” D >= d(S^k) を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった” ”35 rio2016.2ch.net/test/read.cgi/math/1497848835/13 時枝問題(数学セミナー201611月号の
|

|