[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 12/13 06:22 / Filesize : 512 KB / Number-of Response : 775
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む44



225 名前:F一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値である
チコノフの定理:位相空間 X の任意の開集合族 {W}について、いかなる {W}の有限部分集合も X を被覆しないのであれば、 {W}も X を被覆しない。"

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%B3%E3%83%91%E3%82%AF%E3%83%88%E6%80%A7%E5%AE%9A%E7%90%86
コンパクト性定理
(抜粋)
コンパクト性定理(英: Compactness theorem)とは、一階述語論理の文の集合がモデルを持つこと(充足可能であること)と、その集合の任意の有限部分集合がモデルを持つことが同値であるという定理である。
(引用終り)

https://ja.wikipedia.org/wiki/%E3%83%81%E3%82%B3%E3%83%8E%E3%83%95%E3%81%AE%E5%AE%9A%E7%90%86
チコノフの定理
(抜粋)
チコノフの定理または、チホノフの定理 は、数学の位相幾何学 (トポロジー) における定理であり、任意個 (非可算個の場合を含む)のコンパクト空間の直積空間がやはりコンパクト空間となることを主張する。

命題 2:位相空間 X の任意の開集合族 {W}について、いかなる {W}の有限部分集合も X を被覆しないのであれば、 {W}も X を被覆しない。
(引用終り)

以上
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef