[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 03:24 / Filesize : 148 KB / Number-of Response : 1020
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね433



35 名前:132人目の素数さん mailto:sage [2017/09/03(日) 10:20:42.05 ID:W11EH6Zs.net]
一般フィボナッチ数列についてです

nを0以上の整数とし、
f(n)を
f(0)=0,f(1)は任意の整数, a×f(n)+b×f(n+1)=f(n+2)
と定義する

pを素数とする
b^2+4aがmodpで平方非剰余のとき、f((p+1)m) (mは0以上の整数)がpの倍数に、
b^2+4aがmodpで平方剰余のとき、f((p-1)m) (mは0以上の整数)がpの倍数に、
b^2+4aがmodpで0のとき、f(pm) (mは0以上の整数)がpの倍数になる
と予想しました

証明反例教えてくれる方いたらお願いします






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<148KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef