- 4 名前:132人目の素数さん mailto:sage [2017/08/23(水) 13:39:37.65 ID:edu8Brze.net]
- >>3
定石によれば y/x=u とおき、 A + 2Bu + Cuu = 1/xx, 両辺をu で3回微分して 0 = DDD (1/xx), ここで、 D = d/du = (dx/du)(d/dx) = {xx/(xy'-y)}(d/dx) D (1/xx) = -2/{x(xy'-y)} DD (1/xx) = 2(xxy''+xy'-y)/(xy'-y)^3 DDD (1/xx) = -2(x^4)(3x(y'')^2+y'''(y-xy'))/(xy'-y)^5 3x(y'')^2 + y'''(y-xy') = 0. [微分積分スレ.249 260]
|

|