- 376 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/08/14(月) 22:46:05.33 ID:yKZ7rRZ6.net]
- >>351 つづき
https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%BA%E6%8E%A8%E5%AE%9A (抜粋) ベイズ推定(ベイズすいてい、英: Bayesian inference)とは、ベイズ確率の考え方に基づき、観測事象(観測された事実)から、推定したい事柄(それの起因である原因事象)を、確率的な意味で推論することを指す。 従来の推計統計学は既に確固たる数学的理論として構築され、多方面に応用されている。しかしながら母数 a を定数と仮定した上で造り上げられた理論であることから、必ずしも応用に向いたものではない(例えば母集団を決定しにくい医学への応用など)という批判がされる。 一方で、ベイズ推定は人間の思考の過程をモデル化したものとも考えられ、人間の思考様式になじむとも主張されている。 ベイズ推定に対する批判としては、事前確率が主観的で一意的に決められない、またそれをもとにして事後確率を求めても、それが客観的な確率分布に収束するという保証がない、といったものがある。 しかし現在では特にコンピュータを用いた方法の発展によりベイズ推定の方法も発展し、スパムメールを識別するためのベイジアンフィルタなどの応用が進んでいる。 事前分布としては全く情報がない場合には一様分布などが用いられ(もちろん情報があれば他の分布でよい)、一般には異なる事前確率分布からマルコフ連鎖モンテカルロ法などで安定した結果(事後確率分布)が得られれば、実用的に問題はないと考えられている。 (引用終り)
|

|