[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



95 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/06/21(水) 21:21:22.09 ID:jkQw9XXq.net]
>>87 つづき
追伸
現代数学の標準的な自然数の構成法を、前スレでも紹介したので、下記引用します。
rio2016.2ch.net/test/read.cgi/math/1496568298/251
251 返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/06/07(水) 07:30:20.38 ID:qnt5rUPR [3/25]
(抜粋)
下記引用ご参照。現代数学の標準的な自然数の構成法だ
何を言いたいかと言えば、「任意の自然数 a にはその後者 (successor) の自然数 suc(a) が存在する」を繰り返すことによって、”可算無限個の”自然数を構成しているんだ!!
だから、有限モデルから>>223の有限モデルから、一つずつ箱を増やして、”可算無限個の”箱のモデルに到達することは、なんらの問題もないってこと

これが、現代数学の標準的な自然数の構成法だと

https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
(抜粋)
・任意の自然数 a にはその後者 (successor) の自然数 suc(a) が存在する(suc(a) は a + 1 の "意味")。

集合論において標準的となっている自然数の構成は以下の通りである。

無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。 このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = { {}, {{}} }
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { {}, {{}}, { {}, {{}} } }
等々である[3]。

https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86
ペアノの公理
(抜粋)
無限集合の公理は 0 を含む帰納的集合の存在を主張しているので、ここでの N の定義に問題はない。 自然数のシステム (N, 0, suc) はペアノの公理を満たすことが示される。 それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。

等々である。 この構成法はジョン・フォン・ノイマンによる。
これは可能なペアノシステムの構成法として唯一のものではない。
(引用終り)






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef