[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



521 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/07/06(木) 15:13:58.62 ID:qgJA+Zd6.net]
>>459 補足
>L^p空間

おっちゃん、どうも、スレ主です。
おっちゃん、関数解析に詳しそうだから聞くが・・(^^

「数列空間」というのがあるらしいですね。まっとうな数学の研究対象として(下記)
で、一見時枝記事の数列も、「数列空間」と思ったけれど

まっとうな数学の研究対象とするには、数列に”上限ノルム”や”収束”など、数学的に扱いやすいように、限定するみたいですね〜(^^
時枝記事の数列のように、全く制限なしだと、その数学的取り扱いが難しいように思いますが、おっちゃん、どう思いますか?

https://ja.wikipedia.org/wiki/%E6%95%B0%E5%88%97%E7%A9%BA%E9%96%93
数列空間
(抜粋)
関数解析学および関連する数学の分野における数列空間(すうれつくうかん、英: sequence space)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。
そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。
解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ?p である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するLp空間の特別な場合と見なされる。
収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、FK空間(英語版)と呼ばれるフレシェ空間の特殊な場合となる。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef