[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



255 名前:0" rel="noopener noreferrer" target="_blank">>>230 つづき

A5.さらに、代表番号の確率を考えるために、重み付き確率を考えよう
 1)まず、時枝>>12にならって、代表の数列r、問題の数列s = (s1,s2,s3 ,・・・),決定番号dとし, dから先のしっぽは一致とする
  r = (r1,r2,r3 ,・・・,rd,rd+1,rd+2,rd+3 ,・・・)。で、数列sを書き直すと
  s = (s1,s2,s3 ,・・・,rd,rd+1,rd+2,rd+3 ,・・・)。差を取ると、しっぽが消える
  Δ(s,r)= s-r= (s1-r1,s2-r2,s3-r3 ,・・・,sd-1 - rd-1) ( = (s1-r1,s2-r2,s3-r3 ,・・・,sd-1 - rd-1,0,0,0,0,・・・) が正確だろうが、しっぽは無視できる)
 2)だから、s1-r1=b1,s2-r2=b2,s3-r3=b3 ,・・・,sd-1 - rd-1=bd-1 と書き直すと
  Δ(s,r)= (b1,b2,b3 ,・・・,bd-1)となる。ここで、定義から、bd-1 not=0であることにご注意(0とすると、決定番号dが変わる)
 3)ここで、まずはミニモデルとして、箱に0〜9の10通りの数を入れるとする。
  上記より、Δ(s,r)で、bd-1のみ1〜9の10−1通り、他のb1〜bd-2の箱は10通り。
 4)このΔ(s,r)の場合の数は、10^(d-2)*(10-1)通り
 5)ここまでの議論では、列の長さ(箱の個数)Lは、無関係(有限無限含め)。
  なので、まずLを有限とする。
  決定番号dは、1 <= d <= Lだ。代表の数列rによる同値類の集合をTとしよう。
  念のため書くと、Δ(s,r)= s-r から s = Δ(s,r)+ r と表現できて、s = Δ(s,r)+ r ∈T
  rは、各元で共通だから、結局、Δ(s,r)を考えれば良い。そこで、Δ(s,r)の集合をT’としよう。Δ(s,r)∈T’
 6)T’で、決定番号を考える。決定番号dは、1 <= d <= Lだ。自明だが、dが大きいほど、Δ(s,r)は何通りもできて、場合の数は多い。
  例えば、d=1なら1通り、d=2なら9通り、d=3なら90通り、・・、d=iなら10^(i-2)*(10-1)通り、・・d=Lなら10^(L-2)*(10-1)通り(∵d=Lなら最後のL番目の箱は代表と一致しているから)
 
つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef