[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



249 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/06/26(月) 22:47:56.53 ID:fEMhvHu0.net]
>>225 つづき

 2)重川 一郎 京都大学大学院理学研究科数学教室
https://www.math.kyoto-u.ac.jp/~ichiro/index_j.html
https://www.math.kyoto-u.ac.jp/~ichiro/lectures/2012bpr.pdf
2012年度前期 確率論基礎  (講義ノート PDF file) 重川 一郎 京都大
(抜粋)
第1章確率空間と確率変数
確率空間
基本的にσ-集合体では加算個の演算が自由にできる.確率論では可測空間に,確率Pを付加したものを考える.
定義1.3 可測空間(Ω、F)上の測度PでP(Ω) をみたすものを確率測度 という.すなわち次の条件がみたされる:

これらを組にした(Ω、F、P)を確率空間という.
Ωを全事象,または標本空間 という. Ω の要素ω を根元事象 または標本という.
F の要素A を事象 といい,その補集合A^c =Ω\A
を余事象 という.A∪Bを積事象,A∩B を和事象,Φを空事象と呼ぶ.

例1.1 サイコロ投げの場合
確率空間として次のものを準備すればよい.
Ω={1,2,・・・,6}^N ∋ ω=(ω1,ω2,・・・)
ωn は1,2,・・・,6 のいずれかで,n 回目に出た目を表す.確率は
η1, η2,・・・ηn
を与えて
 P(ω1=η1,ω2=η2,・・・ωn=ηn)=1/6^n
と定めればよい.これが実際にσ-加法的に拡張できることは明らかではないが,Kolmogorovの拡張定理と呼ばれる定理により証明できる.
(引用終り)

(私からの補足)σ-集合体Fについては、ここに数学的明示はないが、今回の時枝問題を考える上では、この程度で良いと判断する。(なお、Kolmogorovの拡張定理 は、過去スレで出た記憶あり)

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef