[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



244 名前:現代数学の系譜 古典ガロア理論を読む mailto:sage [2017/06/26(月) 22:44:29.61 ID:fEMhvHu0.net]
>>222 つづき

以上のをまとめると,以下の「事象の公理」になる.今までは故意にΩ が有限集合の場合を考えてきたが,
Ω が無限の時には以下のように考える.
定義1.1.3 (事象の公理=可測空間,無限でもいけるバージョン) Sample Space Ω が与えられたとき,Ω の事象
の集まりとは,以下を満たすΩ の部分集合の集まり(部分集合族)F のことである.
1. F ∋ Φ
2. E ∈ F ならばE^c ∈ F
3. E1,E2,E3, . . . ∈ F に対し,∪{i=1〜∞}Ei ∈ F

・F はΩ のσ-field と呼ばれる.
・このバージョンになると,もはや「Ω の全ての部分集合を事象と認める」とは言っていない事に注意.事象
と認めるのはΩ のσ-field F の元になっているような,特別な部分集合だけである.このような特別の部分
集合にのみ,確率を割り振るのである(以下参照).

1.2 数学における確率

これからいよいよ,「確率」を割り振っていこう.
数学ではある意味で「天下りに」確率を定める.標本空間が有限集合の場合から始めよう.標本空間Ω = {e1, e2, . . . , eN}
を考える(ej が根元事象).

根元事象の起こり易さpj (j = 1, 2, . . .,N)をすべて与えれば確率が決まったと言えるのではないか?
では,この根元事象の確率pj はどんな性質を満たすべきだろうか?まず,これは確率だから0 と1 の間にない
といけない.更に,Ω そのものというのは全事象だからこの確率は1 であるべし.要するに
0 ? pj ? 1, Σ{j=1〜N} pj = 1    (1.2.1)
であればよい,ということになる.そして,根元でない事象E = {e1, e2, e3, . . . , en} については,
(E の確率)= Σ{j=1〜n} pj    (1.2.2)
となるはずである.

(ただし,標本空間が有限の場合).要するに
? sample space Ω 上に根元事象の確率pj を(1.2.1) を満たす形で与え,
? 根元事象でない一般の事象E の確率を(1.2.2) で計算する.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef