[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 19:55 / Filesize : 512 KB / Number-of Response : 737
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 古典ガロア理論を読む35



193 名前:有限個(p個)とします)

>>1氏の有限列モデルでは
最後の箱以外の箱の中身を全て0とした
0…00
0…01
・・・
0…0(p-1)
のp個の列を同値類の代表元にとれます
その際、選択公理は不必要です

そして、もし列長L→∞とした”極限モデル”を考えると
最後の箱がないから、箱の中身を全て0とした
0・・・
の1個だけが代表元となってしまいます
その際、選択公理は不必要です(驚!)

その場合
「ある箱から先の箱が全部0」となる列
以外は決定番号が∞となりますね

し・か・し、これ、実は箱入り無数目の「同値類」の設定に反します
なぜなら、「どの箱から先の箱にも0でないものがある」列
(つまり、>>1氏の「極限モデル」で決定番号∞になる列)
は実は、代表元である筈の「箱の中身が全部0」の列と同値でないからです
同値になるのは、あくまである箱から先の箱が全部0となる列だけです

ということで「箱入り無数目」のモデルでは
>>1氏の「極限モデル」で決定番号∞となる列にも
それぞれ代表元を割り当てる必要があります
そしてその同値類は1つではなく実は非可算無限個あるので
代表元の選択に「非可算選択公理」が必要になります

ここまで書けば「箱入り無数目」モデルは
>>1氏の「極限モデル」とは全く異なることが
>>1氏にも分かると思いますが如何ですか?
Y or N
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<512KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef