- 1 名前:132人目の素数さん [2017/06/19(月) 14:07:15.08 ID:KSjG2B/B.net]
- 前スレ 現代数学の系譜11 ガロア理論を読む
34 rio2016.2ch.net/test/read.cgi/math/1496568298/
- 12 名前:132人目の素数さん mailto:sage [2017/06/19(月) 14:17:10.48 ID:KSjG2B/B.net]
- >>9 <補足>私スレ主の反論
・他サイトからのコピペでスレを埋め尽くす行為:上記>>7のようにどこの馬の骨とも分からない人の発言は、数学的には無価値。真に価値があるのは、根拠のあるURLとそこからのコピペだろう ・デタラメを述べておきながら間違いの指摘は無視する行為:バカの壁。自分のレベルの低さを自覚せず、勉強せず、延々自分たちの狭い知見の議論を繰り返す(文系)High level people を無視するだけのこと (説明しても理解できないレベルでどうしようもない https://ja.wikipedia.org/wiki/%E3%83%90%E3%82%AB%E3%81%AE%E5%A3%81 (抜粋)『バカの壁』は、東京大学名誉教授・養老孟司の著書。 2003年4月10日、新潮新書より刊行された。400万部を超えるベストセラーとなり、同年の新語・流行語大賞、毎日出版文化賞特別賞を受賞。 ・明らかな間違いにもかかわらず、数学は自由だから何でもありだろ?、と・・: ”明らかな間違い”は自分達だろ? なお、現代数学では、定義は自由です。 (文系)High level peopleたちの思考は、19世紀レベルで停止だな。なお、Well-defined の視点は重要だよ https://ja.wikipedia.org/wiki/Well-defined ・他人の学歴など個人情報を聞き出す行為:いくら説明しても、相手が理解できないようなので、相手のレベルを確認したまで。小学生、中学生レベルにこれ以上説明するつもりなく、”勉強してね”というのみ。 せめて高校レベルなら、努力して説明しようかという気にもなる・・。自分よりレベルが高ければ、教えを請うだろう。確認は、普段はしないが、議論がかみ合わなければこれからもありうる(^^; ・その他、材料工学分野の研究者/エンジニアの名誉を貶める行為:あんたら、材料工学の何が分かっているのか? 材料工学を修得した人なら、時枝「箱入り無数目」数学セミナー2015.11月号記事不成立は自明。 材料工学では拡散過程や統計力学で、確率論程度は常識だ。時枝記事は確率論に反するってこと!(^^ さらに、個人的には、わけわからん名無しさん(素数さん)との議論も、価値を置いていない それが、スレ主がコピペでこのスレを埋める理由であり つまらん議論で、時間とスレの余白を浪費しない理由さ(^^;
- 13 名前:132人目の素数さん mailto:sage [2017/06/19(月) 14:19:23.04 ID:KSjG2B/B.net]
- (まあ、時枝記事が分からないと、困るだろうから)
過去スレ20 再録 rio2016.2ch.net/test/read.cgi/math/1466279209/2-7 1.時枝問題(数学セミナー201611月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 2.続けて時枝はいう 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている. 但しもっときびしい同値関係を使う. 実数列の集合 R^Nを考える. s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版). 念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する. 〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく. 幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる. 任意の実数列S に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ. sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す. つまりsd,sd+1,sd+2,・・・を知ればsの類の代表r は決められる. 更に,何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・ が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり, 結局sd(実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう. (補足) sD+1, sD+2,sD+3,・・・:ここでD+1などは下付添え字
|

|