[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/11 16:13 / Filesize : 514 KB / Number-of Response : 749
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む34



247 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2017/06/06(火) 20:10:05.33 ID:VOINjUAM.net]
>>217
どうも。スレ主です。

>>量子群
>実は群じゃない これ豆な

多分過去スレで同じ会話があった記憶が・・
まあ、カキな

https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E7%BE%A4
(この項目「量子群」は途中まで翻訳されたものです。(原文:英語版 "Quantum group" 10:05, 2 March 2016 (UTC))翻訳作業に協力して下さる方を求めています。)
量子群
(抜粋)
数学と理論物理学において、用語量子群(りょうしぐん、英: quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。

直観的意味
量子群の発見は全く予想されていなかった、というのも、長い間、コンパクト群や半単純リー環は「堅い」対象である、言い換えると、「変形」(deform) できないと思われていたからだ。
量子群の背後にある思想の1つは、ある意味で同値だがより大きい構造、すなわち群環や普遍包絡環を考えれば、群あるいは包絡環は「変形」できる(変形すると群や包絡環ではなくなるが)ということである。
正確には、変形は可換とも余可換とも限らないホップ代数の圏において達成される。変形した対象を、アラン・コンヌ (Alain Connes) の非可換幾何の意味での「非可換空間」上の関数の代数として考えることができる。
しかしながら、この直観は、Leningrad School (Ludwig Faddeev, Leon Takhtajan, Evgenii Sklyanin, Nicolai Reshetikhin and Vladimir Korepin) と、Japanese School による関連した研究によって発展された、量子ヤン・バクスター方程式(英語版)と量子逆散乱法(英語版)の研究において、量子群の特定のクラスが有用性を既に証明された後に来た[1]。
量子群の第二の双クロス積(英語版)のクラスの背後にある直観は異なり、量子重力へのアプローチとして自己双対な対象の研究から来た[2]。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<514KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef