- 495 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2017/05/30(火) 23:41:59.62 ID:fHaelpbN.net]
- >>419
どうも。スレ主です。 ”ボット(Bott)の周期性定理”これか・・ https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%BC%E3%82%B9%E7%90%86%E8%AB%96 モース理論 (抜粋) モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) の周期性定理(英語版)の証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。 www.wikiwand.com/ja/K%E7%90%86%E8%AB%96 K理論 (抜粋) K-理論は、位相空間やスキームに対して環を対応させる K-函手の族を構成する。これらの環は、元の空間やスキームの構造のいくつかの側面を反映している。 代数トポロジーにおいてホモロジーやコホモロジーといった群への函手を考えるのと同様に、元の空間やスキームを直接調べるよりもこのような環の方が容易に種々の性質をしらべることができる。 K-理論のアプローチから得られる結果の例としては、ボットの周期性(英語版)(Bott periodicity)やアティヤ=シンガーの指数定理やアダムズ作用素(英語版)(Adams operation)がある。 高エネルギー物理学では、K-理論、特にツイストした K-理論(英語版)(twisted K-theory)は、II-型弦理論に現れる。 そこでは、K-理論が、Dブレーンやラモン-ラモン場(英語版)(Ramond?Ramond field)の強さ、一般化された複素多様体上のスピノルを分類すると予想されている。 物性物理学では、K-理論は、トポロジカル絶縁体、超伝導や安定フェルミ面を分類することに使われる。詳細はK-理論 (物理学)(英語版)(K-theory (physics))の項を参照。
|

|