[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2ch.scのread.cgiへ]
Update time : 04/12 06:47 / Filesize : 513 KB / Number-of Response : 593
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む27



414 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2017/01/07(土) 18:01:14.61 ID:3+lYjsf1.net]
>>368-369 補足
回答になってないが、まず、前スレより再録

334 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/17(土) 11:39:43.39 ID:sIK9xcpB
>>183-184 にもどる
https://ja.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E5%B0%8F%E6%95%B0
循環小数
ロバートソン(J.Robertson,1712-1776)の方法
循環小数
a + b ( 10^ n /(10^ n - 1) )

b ( 10^ n /(10^ n - 1) )が、循環節
aが、冒頭の循環していない有限小数部分
(引用終り)

時枝>>2の数列しっぽ同値類で、ロバートソンの方法類似の表現が考えられるね

代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・)
ここで、同じ類の元を一つ取る
r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・)

しっぽの”・・・)”の部分は、同値類なので同じ(後述の差を取ると、なくなる部分)

いま、簡単に n<mとしよう
そうして、数列の差を考える

r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)

しっぽの”0,0,0・・・)”の部分は、しっぽの同値類なので、差を取ると0になる。そこで、これをなくなると見なす

Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) として
Δrは、個別には、有限の長さの数列になり、ロバートソンの方法類似の表現で
r'= Δr +r
とできる

Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに上限はなく、無限大の極限を考える必要がある
それは>>188と同じだ

かつ、大きな違いは、
循環小数






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<513KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef