[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 2ch.scのread.cgiへ]
Update time : 04/12 06:47 / Filesize : 513 KB / Number-of Response : 593
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む27



14 名前:132人目の素数さん mailto:sage [2016/12/30(金) 15:17:59.50 ID:DA9ugHgO.net]
前スレの書き込みに対して
> 「正の無限大に発散する」場合も、極限は存在するよ・・、おい

スレ主は元々
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
と書いているでしょう

それでたとえΔrの極限が存在しても極限をとる前に存在していた0[n]の開始番号がΔrの極限をとると無くなるので
Δrの極限から決定番号を求めることができないと言っている

> 決定番号がlim →∞ になっても、∞−∞=0に限られないんだよ
> ∞−∞=1も可能だな

これは間違いで決定番号の極限に関しては∞−∞=0になる

自然数全体の集合の順序数をωと書くことにして任意の有限集合の順序数をnと書くことにすると
n + ω = ω ≠ ω + n であってこれを用いれば
[An_{1}{?}, 0[n]_{?+1}{∞}]のように無限数列を書いた場合
An_{1}{?}が有限数列であれば0[n]_{?+1}{∞}は無限数列となり (n + ω = ωに対応)
An_{1}{?}が無限数列であれば0[n]_{?+1}{∞}は長さが0(つまり∞−∞=0)にならなければならない (ω ≠ ω + nに対応)

決定番号の極限に関して∞−∞=1ならばω = ω + 1となって矛盾する






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<513KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef