- 643 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/12/24(土) 10:11:56.56 ID:fZUC3rLQ.net]
- >>533 もどる 関連
>昔、神保 道夫先生の量子群 q変形(q-analog)の記事を読んだときに、「量子群」は単なる命名で、本当に量子力学と関連してくるとは見ていなかったけど・・ ご参考。”量子群”は”量子可積分系”から来ているんだね。数学理論は整備されると、実際の物理現象に適用されるようになるということか・・ https://ja.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E7%BE%A4 量子群 (抜粋) 数学と理論物理学において、用語量子群(りょうしぐん、英: quantum group)は付加構造を持った様々な種類の非可換代数を指す。一般に、量子群はある種のホップ代数(英語版)である。ただ1つの包括的な定義があるわけではなく、広範に類似した対象の族がある。 用語「量子群」は最初量子可積分系の理論において現れた。ウラジーミル・ドリンフェルト ( Vladimir Drinfeld) と神保道夫によってホップ代数のある特定のクラスとして定義されたのだった。 https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%A9%8D%E5%88%86%E7%B3%BB#.E9.87.8F.E5.AD.90.E5.8F.AF.E7.A9.8D.E5.88.86.E7.B3.BB 可積分系 (抜粋) 量子可積分系 量子可積分系(quantum integrable systems)という考え方もある。量子論的な設定では、相空間上の函数がヒルベルト空間上の自己共役作用素に置き換わり、ポアソン可換な函数(Poisson commuting functions)が可換な作用素(commuting operators)へ置き換わる。 量子可積分系を説明するために、自由粒子の設定を考えるとよい。ここに全ての力学は一体(問題)となる。量子系は力学が二体(問題)に還元されるときに積分できると言われる。 ヤン・バクスター方程式(英語版)(Yang-Baxter equation)は、この還元性の結果であり、保存量の無限個の集まりを与えるトレースで同一視することをもたらす。 このアイデアの全ては、明白な解を得る代数的ベーテ仮設(英語版)(Bethe Ansatz)を使うことができる量子逆散乱法(英語版)(Quantum inverse scattering method)の中に組み込まれている。 量子可積分モデルの例は、リーブ・リンガーモデル(英語版)(Lieb-Liniger Model)やハバードモデル(Hubbard model)や、ハイゼンベルグモデル(英語版)(Heisenberg model)のいくつかの変形がる。[1]
|

|