- 306 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/12/11(日) 09:53:23.46 ID:WKZ/A5sc.net]
- >>275 補足
> 2)時枝の>>2の”可算無限個ある箱それぞれに,私が実数を入れる”から出発して、”閉じた箱を100列に並べる”とやると、まさにヒルベルトのホテルのパラドックスに嵌まる >>7より再録 ヒルベルトの無限ホテルのパラドックス https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9 (抜粋) 新たな客は1人どころか、複数でも、(可算)無限でもよい。例えば、1号室の客を2号室へ、2号室の客を4号室へ、3号室の客を6号室へ、…、n 号室の客を 2n 号室へ、…と移せば、1号室、3号室、5号室、…つまり奇数号室は空室になるから、無限の客を新たに泊めることができる。 さらに次のようなこともできる。それぞれに無限の乗客が乗った無限台の車がホテルに乗りつけたとする。この場合、まず奇数号室を上のようにして空け、1台目の乗客を 3n(n = 1, 2, 3, …)号室に、2台目の乗客を 5n(n = 1, 2, 3, …)号室に、…というふうに入れる。i 台目の乗客は pn(ここで p は i + 1 番目の素数)に入れればよい。 現実にある(2室以上ある)有限ホテルでは、当然奇数号室の数は全室数より少ないが、無限ホテルではそうではない。数学的には、全室からなる集合の基数(有限集合における要素の個数に当たる)は、その真部分集合である奇数号室すべての集合の基数と等しい。これは無限集合の特徴である。この可算無限集合の基数は アレフ 0 と表される。 (引用おわり) 1.”可算無限個ある箱”→”閉じた箱を100列に並べる” 当然、100列は、可算無限 2.逆も可 ”可算無限個ある箱”←”閉じた箱を100列に並べる” 3.つまり、例えば、101列作って、余分の1列をどこかの列の先頭につけるなど >>86のような ”キマイラ数列 a1,a2,a3,・・・,ai,・・・・,b1,b2,b3,・・・,bj,・・・・” を排除することが難しくなる(おそらく不可能) ということは、決定番号の扱いも困難になるという問題を生じる
|

|