[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2ch.scのread.cgiへ]
Update time : 04/11 20:17 / Filesize : 505 KB / Number-of Response : 813
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む24



636 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/23(日) 19:09:25.30 ID:MjfWcywG.net]
>>573 補足
mathoverflow で、下記2の議論があるね。この解法の不成立を主張している
”If there is only person, no matter which boxes they view, they gain no information about the un-opened boxes due to independence. Thus, their probability of guessing correctly is actually 0, not (N?1)/N, say.
If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. ”だと。質問者のDenisは同意していないがね まあ、おっちゃんには読めないだろうが(^^;
mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice Dec 9 '13 Denis
(抜粋)
2
I also like this version of the riddle. To answer the actual question though, I would say that it is not possible to guess incorrectly with probability only 1/N, even for N=2.
In order for such a question to make sense, it is necessary to put a probability measure on the space of functions f:N→R. Note that to execute your proposed strategy, we only need a uniform measure on {1,…,N},
but to make sense of the phrase it fails with probability at most 1/N, we need a measure on the space of all outcomes. The answer will be different depending on what probability space is chosen of course.

Here's a concrete choice for a probability space that shows that your proposal will fail. Suppose that for each index i we sample a real number Xi from the normal distribution so that the Xi






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<505KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef