- 1 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/07(金) 15:47:55.27 ID:++KBxzq2.net]
- 旧スレが500KBオーバー間近で、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。) 過去スレ 現代数学の系譜11 ガロア理論を読む23 rio2016.2ch.net/test/read.cgi/math/1474158471/ 現代数学の系譜11 ガロア理論を読む22 rio2016.2ch.net/test/read.cgi/math/1471085771/ 現代数学の系譜11 ガロア理論を読む21 rio2016.2ch.net/test/read.cgi/math/1468584649/ 現代数学の系譜11 ガロア理論を読む20 wc2014.2ch.net/test/read.cgi/math/1466279209/ 現代数学の系譜11 ガロア理論を読む19 wc2014.2ch.net/test/read.cgi/math/1462577773/ 同18 wc2014.2ch.net/test/read.cgi/math/1452860378/ 同17 wc2014.2ch.net/test/read.cgi/math/1448673805/ 同16 wc2014.2ch.net/test/read.cgi/math/1444562562/ 同15 wc2014.2ch.net/test/read.cgi/math/1439642249/ 同14 wc2014.2ch.net/test/read.cgi/math/1434753250/ 同13 wc2014.2ch.net/test/read.cgi/math/1428205549/ 同12 wc2014.2ch.net/test/read.cgi/math/1423957563/ 同11 wc2014.2ch.net/test/read.cgi/math/1420001500/ 同10 wc2014.2ch.net/test/read.cgi/math/1411454303/ 同9 wc2014.2ch.net/test/read.cgi/math/1408235017/ 同8 wc2014.2ch.net/test/read.cgi/math/1364681707/ 同7 uni.2ch.net/test/read.cgi/math/1349469460/ 同6 uni.2ch.net/test/read.cgi/math/1342356874/ 同5 uni.2ch.net/test/read.cgi/math/1338016432/ 同(4) uni.2ch.net/test/read.cgi/math/1335598642/ 同3 uni.2ch.net/test/read.cgi/math/1334319436/ 同2 uni.2ch.net/test/read.cgi/math/1331903075/ 同初代 uni.2ch.net/test/read.cgi/math/1328016756/ 古いものは、そのままクリックで過去ログが読める。また、ネットで検索すると、無料の過去ログ倉庫やキャッシュがヒットして過去ログ結構読めます。
- 5 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/07(金) 15:51:38.81 ID:++KBxzq2.net]
- (趣旨は同じ)
3.つづき 問題に戻り,閉じた箱を100列に並べる. 箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,S^lOOを成す(肩に乗せたのは指数ではなく添字). これらの列はおのおの決定番号をもつ. さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 第1列〜第(k-1) 列,第(k+1)列〜第100列の箱を全部開ける. 第k列の箱たちはまだ閉じたままにしておく. 開けた箱に入った実数を見て,代表の袋をさぐり, S^1〜S^(k-l),S^(k+l)〜SlOOの決定番号のうちの最大値Dを書き下す. いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま D >= d(S^k) を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった. おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので 列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる. 確率1-ε で勝てることも明らかであろう. (補足) S^k(D+l), S^k(D+2),S^k(D+3),・・・:ここで^kは上付き添え字、(D+l)などは下付添え字
- 6 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/07(金) 15:52:05.98 ID:++KBxzq2.net]
- 前々スレ>>614 再録 (現代数学の系譜11 ガロア理論を読む18)
数学セミナー201511月号P37 時枝記事に、次の一文がある 「R^N/〜 の代表系を選んだ箇所で選択公理を使っている. その結果R^N →R^N/〜 の切断は非可測になる. ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」 さらに、前スレでは引用しなかったが、続いて下記も引用する 「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない. しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う. 現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ. だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう. 確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」
- 7 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/07(金) 15:52:40.65 ID:++KBxzq2.net]
- >>6の続きを、前々スレ>>176 (現代数学の系譜11 ガロア理論を読む18)より 再録
数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. いったい無限を扱うには, (1)無限を直接扱う, (2)有限の極限として間接に扱う, 二つの方針が可能である. 確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ. (独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.) しかし,素朴に,無限族を直接扱えないのか? 扱えるとすると私たちの戦略は頓挫してしまう. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか−−他の箱から情報は一切もらえないのだから. 勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる. ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
|

|