[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 2ch.scのread.cgiへ]
Update time : 04/11 20:17 / Filesize : 505 KB / Number-of Response : 813
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む24



418 名前:現代数学の系譜11 ガロア理論を読む mailto:sage [2016/10/15(土) 07:02:15.65 ID:t3SN4WMl.net]
>>378
自分も説明できないが(^^;

1.100列で、確率99/100をコンピュータシミュレーションしてみようと考えると
2.シミュレーションのために、決定番号の確率分布を考える必要がある
3.確率分布を考えるために、決定番号dをかんがえると、”(数列)sとr とがそこから先ずっと 一致する番号を sの決定番号と呼び,d = d(s) と記す.”>>3だったね
  そこで、箱に1〜pまでの数を入れたとすると、先頭の箱からd番目までの場合の数はp^d(pのd乗)となる。つまり、指数関数的
  (箱は、可算無限個>>2だから、dに上限はなく、d→∞ の分布を考える必要がある)
4.まず、dが有限としても、dが大きくなると、ファットテールどころか、テールが指数関数的に発散する。そういう類いの分布>>367なので
  コンピュータシミュレーションを行えば、dはテールの後ろの方に集中して出現することになる
5.そこで、「テールが指数関数的に発散する分布」でd→∞を考えると、”中心極限定理が成り立たない 母集団に平均や分散が存在しない”ことに気付く>>365
  そういう分布では、”確率99/100”は言えないだろうと
6.さらに、もともとの問題は、箱に1〜pまでの数でなく、”実数を入れる.どんな実数を入れるかはまったく自由”>>2という設定だった
  ならば、pに上限はないので、pが自然数としてもp→∞を考えると、そういう分布では、”確率99/100”は言えないだろうと(∵テール発散のため)

言いたいことはそういうことです
これでどうかな?(^^;






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<505KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef