- 407 名前:歴史に触れないわけにはいかない。粗雑にではあるが,これらの経緯を概
観しよう。 11.2 不確定性関係の厳密化 ハイゼンベルクは,いくつかの思考実験と計算例を通して(11.1), (11.3) のような関係を 見い出したものの,いかなるミクロ系のどのような状態にも通用するような不確定性関係を 証明したわけではなかった。そもそもハイゼンベルクが書いた式(11.1), (11.3) に登場して いるp1 やq1 は明確に定義された量ではなく,運動量や位置の「不確かさの大きさの目安」 でしかない。したがって,これらの式は等式でも不等式でもない,おおよそこの程度の大き さだということを示す記号「?」で結ばれた頼りない関係式であった。 11.3 ハイゼンベルクがしたこと 1930 年に出版されたハイゼンベルクの本[11] では,多数の思考実験が提示され,そのつ ど不確定性関係を表す数式が書かれているが,現代の目から見ると,その中には,誤差と擾 乱の不確定性関係と解すべきものもあるし,誤差同士のトレードオフ関係のように見えるも のもあるし,標準偏差のようなゆらぎの関係式と解すべきものもある。 11.4 物理理論の受け止め方 解釈・イメージが万人に共有されていないことは,何も量子力学に限った話ではない。例 えば,ニュートン力学の解釈は,変更や多様性の余地はないと思われているかもしれないが, ニュートンが生きていた時代の力学の理解のしかたと現代人の力学の理解のしかたは相当に 違うし,現代人の間ですら理解のしかたが統一されているわけではない。 少しだけ例を挙げると,現代の多くの物理学者は,物体が受ける力から物体の軌道を決め るのが運動方程式だと理解しているが,ニュートンは,力から軌道を求める課題よりも,軌 道から力を決める課題のほうが先行すると考えていたし,そのように本に書いている[72]。 ニュートンは,惑星が楕円軌道を描くことから,惑星に作用する引力は惑星と太陽を結ぶ距 離の2 乗に反比例することを導いたのであり,その逆ではない。 [] - [ここ壊れてます]
|

|