[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/12 01:48 / Filesize : 510 KB / Number-of Response : 794
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む22



517 名前:132人目の素数さん mailto:sage [2016/09/05(月) 21:34:20.50 ID:DvGyCbWg.net]
>>460
GAME2はプレーヤー1の有理数を選ぶ確率分布を指定すれば、知りたい確率は求められる、と私は主張します。

意見が対立しているところなので、きちんとやりましょう。

GAME2を次のように定式化してみる。
T: [0,1]内の有理数全体の集合 = {t_1, t_2, …} (ファレイ数列でも使って適当に並べる)
〜を件の同値関係として、T/〜の代表系は代表元が循環節のみの有理数とする。
(例えば、0.99123123…を含む同値類の代表元は 0.23123123…。>>450の「最小」は勘違い。これに訂正する。)
K:={1, 2, …, K} ( K は分ける列の本数)
Ω:=T×K
E:=2^Ω
P:E→[0,1], P({(t_i,k)}) = Poisson(i) / K (Poisson(i)は正定数λのポアソン分布)を満たす確率測度
とすると (Ω,E,P) は確率空間になる。
つまり、すべてのΩの部分集合Aは可測で P(A)が計算できる。……★
T:Ω→T, T(t_i,j) := t_i (プレーヤー1が選ぶ有理数)
J:Ω→K, J(t_i,j) := j (プレーヤー2が選ぶ列の番号)
d_k:Ω→N, d_k(t_i,j) := (有理数 t_iに対応する数字列を K列に分けたときの k番目の数字列の決定番号)
w:Ω→{1,2}, w(t_i,j) := (プレーヤー1が有理数 t_iを選び、プレーヤー2が j番目の数字列を選んだときに勝つプレーヤーの番号)
w(t_i,j)=1 ⇔ d_j(t_i,j) > max[k≠j]{d_k(t_i,j)}
d_kの確率分布は P(d_k=n)

私は★から、計算の詳細によらず、勝率やd_kの確率分布が求められると考えますが、あなたはどう考えますか?
(1)この定式化のやり方自体が変
(2)この定式化のやり方はよいが、★が変
(3)★もよいが、T,J,d_k,w などの確率変数の定義などが変
(4)確率変数の定義などもよいが、勝率やd_kの確率分布は求められない
どれでしょうか?






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<510KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef