- 20 名前:現代数学の系譜11 ガロア理論を読む [2016/07/15(金) 22:38:49.65 ID:A9zfkBNj.net]
- よく考えてみると、「任意の整列集合に対して次のように一般化することができる」「選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる」と(下記)
とすれば、自然数Nは可算無限の濃度(アレフゼロ)ではあるが、集合の元としては∞は含まれていないことに気付く https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95 超限帰納法 上記の形で自然数について定式化された数学的帰納法は、任意の整列集合に対して次のように一般化することができる。 この一般化を超限帰納法 (ちょうげんきのうほう、英: transfinite induction)という。任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。
|

|