1 名前:132人目の素数さん [2016/06/28(火) 22:23:11.95 ID:A43nIS8m.net] ルジャンドル予想 任意の自然数xについて x^2<p<(x+1)^2となる素数pが必ず存在する
49 名前:tai [2016/07/10(日) 09:00:36.86 ID:LMjc6pzF.net] さらに時間の節約のために m-k=3の場合しか 計算しなくてよいのですか m-k>4の場合はどこにも出てきませんが
50 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 14:34:37.36 ID:tB7w6aHj.net] >>48 背理法で示そうとしているから、②と④の場合ではm-k=3の場合が考慮できない から可能性として否定していいと言っているだけ、それぐらいのことも分からないのかと
51 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 14:38:11.76 ID:tB7w6aHj.net] >>43 m-k=axでa>=2、x>=2としていて、m-k=3の場合には成り立たないと 言っているだけなのに、これだけのことが分からないとはどういうこと 中学レベルだが。
52 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 16:56:06.88 ID:tB7w6aHj.net] >>40 の続き ③の検討以降を変更します。これで証明されたかもしれません。 mが偶数のとき、kは1<=k<=m-3の値をとる bをb>=1の整数として k=m-2b-1のとき m-k=ax-2k=ax-2m+4b+2 m-k≡1 (mod 2)で、a>=2,x>=2であるから、ax>=9 k=-m+ax>=-m+9 m-2b-1>=-m+9 ∴m>=b+5 このとき、3<=m<b+5のmに対してはkは存在せず、m=b+5のときには k=1,2が、m=b+6のときには、k=1が成立しない。 mが奇数のとき、kは2<=k<=m-3の値をとる cをc>=1の整数として k=m-2cのとき m-k=ax-2k=ax-2m+4c m-k≡1 (mod 2)で、a>=2,x>=2であるから、ax>=9 k=-m+ax>=-m+9 m-2c>=-m+9 ∴m>=c+5 このとき、3<=m<c+5のmに対してはkは存在せず、m=c+5のときには k=1,2が、m=c+6のときには、k=1が成立しない。 ①を満たす全てのkに対し、m+kとm-kのどちらかまたは両方を合成数に することができないので、命題は示された。
53 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 17:17:25.66 ID:tB7w6aHj.net] >>51 奇数の場合を訂正 このとき、3<=m<c+5のmに対してはkは存在せず、m=c+5のときには k=2が成立しない。
54 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 17:42:27.78 ID:rTeNr+1E.net] 素数法則発見スレで独りよがりの垂れ流しをしてた人だと思う。 自分の書いたことを自己点検できない可哀想な人。
55 名前:tai [2016/07/10(日) 18:27:56.88 ID:LMjc6pzF.net] さよなら あなたアホですね 私がかかわるより ほかの人にやってもらおう 何も条件がないところから ゴールドバッハは示せません はいおわり
56 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 18:31:00.72 ID:bl9LbblL.net] リーマン予想と同値だったりして
57 名前:tai [2016/07/10(日) 18:36:55.38 ID:LMjc6pzF.net] だから第三者を入れて どっちが正しいのか 検証してもらおうや 水掛け論になってる
58 名前:tai [2016/07/10(日) 18:42:44.25 ID:LMjc6pzF.net] m-k=axでa>=2、x>=2としていて、m-k=3の場合には成り立たない ならばm-k=4の場合は考えなくていいと へえ mと差kが4の場合ははいりほうにより間げなくていいんだって どう思う?
59 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 18:43:37.88 ID:F+BAXOB/.net] いや、あなたがまともに証明を読む能力を身につければいいだけの話であり、それしか根本的な解決策はない 第三者を入れるなどと、多数決で真偽判定するつもりか?
60 名前:tai [2016/07/10(日) 18:48:14.40 ID:LMjc6pzF.net] 残念ながら 俺は常識人レベルの算数しか知らない 昔書き込んでたたかれた時には 俺は人の話を聞こうとした 天才過ぎて俺にはわかんないや
61 名前:tai [2016/07/10(日) 19:14:38.33 ID:LMjc6pzF.net] いや成り行き上 読むことになっただけなんだけど 正しいんなら それでいいんじゃないですか ただ誰もそんな態度では 検証してくれませんね 論文誌に発表すればいいんじゃない
62 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 19:37:36.69 ID:tB7w6aHj.net] 誰も検証しないかどうかは、誰も分からない。 自分での検証は限界があると思います。 反論がある方はどうぞ。
63 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 19:41:10.39 ID:+zxuQaCa.net] 二人とも出て毛 このスレから出てけ ここはルジャンドルスレだぞ
64 名前:名無しさん@そうだ選挙に行こう! Go to vote! mailto:sage [2016/07/10(日) 19:45:54.59 ID:tB7w6aHj.net] >>62 このスレを立てたものですが、スレが立てられなかったので >>40-41 ,51-52を書きました。
65 名前:132人目の素数さん mailto:sage [2016/07/11(月) 05:35:02.88 ID:O3ysKpk3.net] >>61 間違いを理由付きで他人から指摘されたとき、その指摘が妥当かどうか判断できないのは論外 限界を持ち出すなど片腹痛い
66 名前:132人目の素数さん [2016/07/11(月) 06:22:00.16 ID:Xr9tjBNn.net] >>64 ルジャンドル予想の証明は間違えていた。再三で申し訳ないがまた直してみました。 以下にルジャンドル予想の証明を書きます。 x=1,2のとき、(x,p)=(1,2),(1,3),(2,5),(2,7)となり素数pが存在する。 整数nが以下の式を満たすとする x^2<n<(x+1)^2…① x>2のとき、整数nは整数x+1で割り切れない。 kを整数とし 1<=k<=x-1 を満たすとすると n=x^2+x+k a,bを2以上の整数とすると、①の範囲でnが合成数であるとすれば n=ab xが偶数のとき、cを整数とし 0<=c<=(x-2)/2 を満たすとする k=2c+1のとき n=x^2+x+2c+1≡1 (mod 2)だから n=ab≡1 (mod 2)で、a>=2,b>=2であるから、ab>=9 x^2+x+2c+1>=9 ∴c<=(-x^2-x+8)/2 以下の不等式が成立するとき、c=(x-2)/2とならない。 -x^2-x+8<x-2 ∴x>-1+√11=2.3166… 4以上の偶数xに対して、x^2+x<n<x^2+2xを満たすnは全て合成数とならない。 xが奇数のとき、dを整数とし 0<=d<=(x-3)/2 を満たすとする k=2d+1のとき n=x^2+x+2d+1≡1 (mod 2)だから n=ab≡1 (mod 2)で、a>=2,b>=2であるから、ab>=9 x^2+x+2d+1>=9 ∴d<=(-x^2-x+8)/2 以下の不等式が成立するとき、c=(x-3)/2とならない。 -x^2-x+8<x-3 ∴x>-1+2√3=2.4641… 3以上の奇数xに対して、x^2+x<n<x^2+2x-1を満たすnは全て合成数とならない。 以上から、全てのxに対してx^2+x<n<(x+1)^2を満たすnに少なくとも 1個以上の素数が存在する。
67 名前:132人目の素数さん mailto:sage [2016/07/11(月) 08:09:44.93 ID:Xr9tjBNn.net] >>65 この証明は間違っていました。
68 名前:132人目の素数さん mailto:sage [2016/07/11(月) 10:26:30.36 ID:7DJBrHot.net] トポロジカルインデックス薦めたけど無駄だったか。
69 名前:132人目の素数さん mailto:sage [2016/07/11(月) 21:55:11.40 ID:GA0wYsi/.net] 有名な未解決問題がどうして初等的な方法で解けると思うのか理解に苦しむ
70 名前:132人目の素数さん mailto:sage [2016/07/12(火) 00:03:51.62 ID:wZVL3DvS.net] それは別に悪くない。挑戦して難しさを知るのは大事。
71 名前:132人目の素数さん mailto:sage [2016/07/12(火) 00:15:19.32 ID:GkZePPUP.net] 人のいないところでやって、オ・ネ・ガ・イ
72 名前:132人目の素数さん mailto:sage [2016/07/12(火) 04:52:05.71 ID:CkRUQieD.net] >>68 >>51
73 名前:132人目の素数さん mailto:sage [2016/07/12(火) 06:16:37.00 ID:r6SHu93/.net] >>68 どっちもこれ
74 名前:132人目の素数さん [2016/07/12(火) 18:58:23.20 ID:CkRUQieD.net] ゴールドバッハ予想の証明を書きます。 nを2以上の整数とするとき 2n=p+q となる素数p,qが存在する nが素数の場合には、p=q=nで成立する。 n=2の場合、p=q=2。 nが3以上の場合には、p=2とするとq=2(n-1)となり qが合成数となるから、pは3以上の素数となる。 p<n<qとしても一般性を失わない。 kを整数として 1<=k<=n-3 を満たすとする。 a,bを整数として n-k≡a (mod m), a>0 n+k≡b (mod m) とすると a+b≡2n (mod m) m=2のとき 2n≡0 (mod 2)で、b>0となる m>2のとき a?2n (mod m)のとき、b>0となる。 それより小さい素数が2個以上となるn>5の場合に rを整数、0<=r<mとして p≡r (mod m) を考える。 mがm>5のとき、それより小さい素数を2個以上持つので rは2個以上の値を持つ。 m=5の場合は 3≡2 (mod 5) 5≡0 (mod 5) m=4の場合は 3≡3 (mod 4) 5≡1 (mod 4) m=3の場合は 3≡0 (mod 3) 5≡2 (mod 3) となるので、m>2を満たすmに対して、rの値は2個以上となる。 n>5のnに対し、それぞれのmをa?2n (mod m)を満たすように 選択することにより、m+kを素数とすることができる。 2<=n<=5は (n,p,q)=(2,2,2),(3,3,3),(4,3,5),(5,3,7),(5,5,5) となるので、命題は示された。
75 名前:132人目の素数さん mailto:sage [2016/07/12(火) 19:00:31.81 ID:CkRUQieD.net] >>73 ?となっているのは、≡の否定です。
76 名前:132人目の素数さん mailto:sage [2016/07/12(火) 19:34:19.61 ID:GkZePPUP.net] >>73 m は何?
77 名前:132人目の素数さん mailto:sage [2016/07/12(火) 20:33:13.50 ID:CkRUQieD.net] >>75 mは整数で m<x を満たします。
78 名前:132人目の素数さん mailto:sage [2016/07/12(火) 20:41:33.52 ID:CkRUQieD.net] >>75 間違えました、mは整数でm<nです。
79 名前:132人目の素数さん mailto:sage [2016/07/13(水) 00:07:48.37 ID:QGZwhDi5.net] >>73 >5≡2 (mod 3) の下3行を以下に訂正します。 となるので、m>2を満たす全てのmに対して、rの値は2個以上となる。 n>5のnで、m=2に対しては、b>0となり、m>2であるそれぞれのmに対して rをa?2n (mod m)を満たすように選択することにより、b>0となるから n>5のnに対して、m+kを素数とすることができる。
80 名前:132人目の素数さん [2016/07/13(水) 00:33:17.39 ID:QGZwhDi5.net] レモワーヌの予想の証明を書きます。 レモワーヌの予想 全ての大きな奇数 (n > 5) は1つの素数と1つの素数の2倍の和である p,qを素数とする。 n=p+2q mを整数とし 2<=m<=n-1 を満たすものとする。 a,bを整数とし 2q≡a (mod m), a>0 n≡b (mod m) とする。 b=0の場合には、p+2q≡0 (mod m)となるから p?0 (mod m)となる。 b>0の場合には p+2q≡b (mod m) となるから p≡b-a (mod m) となることが必要となる。 n>5のときには、nより小さい素数は2個以上存在する。 rを整数として p≡r (mod m) を考える。 mがm>5のとき、それより小さい素数を2個以上持つので rは2個以上の値を持つ。 3≡2 (mod 5) 5≡0 (mod 5) m=4の場合は 3≡3 (mod 4) 5≡1 (mod 4) m=3の場合は 3≡0 (mod 3) 5≡2 (mod 3) となるので、m>2を満たす全てのmに対して、rは2個以上となる。 n>5のnに対し、b=0の場合はp?0 (mod p)となり b>0のとき、m=2の場合は、p≡b?0 (mod m)であり、m>2の場合は 全てのmに対して、それぞれのrをb≠aを満たすように選択すること により、p≡b-a?0となり、pを素数にすることができる。 以上により、命題は示された。
81 名前:132人目の素数さん mailto:sage [2016/07/13(水) 00:59:05.48 ID:UVfHWBod.net] なんとも哀れをもよおすなあ
82 名前:132人目の素数さん mailto:sage [2016/07/13(水) 01:04:58.80 ID:QGZwhDi5.net] >>80 何故?
83 名前:132人目の素数さん mailto:sage [2016/07/13(水) 01:13:18.73 ID:UVfHWBod.net] >>81 相変わらずこんなことをやっているからさ >>79 > 3≡2 (mod 5)
84 名前:132人目の素数さん mailto:sage [2016/07/13(水) 01:16:50.01 ID:QGZwhDi5.net] >>82 なるほど、どうも。 >>73 ,79 の3≡2 (mod 5)を 3≡3 (mod 5) に訂正します。
85 名前:132人目の素数さん mailto:sage [2016/07/13(水) 01:31:45.63 ID:UVfHWBod.net] >>73 > 選択することにより、m+kを素数とすることができる。 >>79 > により、p≡b-a?0となり、pを素数にすることができる。 ”できる”証明がどこにもない。
86 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/13(水) 03:40:34.51 ID:K/H8KF/H.net] 日本人の躾けは『大人の都合』、その目的は威厳に屈服させる為: ある父親:クマが出没する山林に息子を放置、しかも嘘を吐いて保身。 別の父親:勉強の邪魔をして進路を妨害し、学歴を砕く。出世を強要。 ソレでも「親の行為は子供の為」という傲慢な常識を振り回す世間、しかも 「親を尊敬して大切に扱え」という無根拠な思想を押し付ける儒教文化。 お父さん、お母さんを大切にしましょう!!!ソレが世間体というモノ! ケケケ¥ 政治家も、お教授も、権力を振り回すのが大好きな低能人種: ある男:ボクは都民の為に湯河原で休んでるんだ。知事が信じられんのかっ! 別の男:オレは哲也の為に指導してやってるんだ。父親が信じられんのかっ! 上から目線で強弁すれば、自分の言い分は何でも通る国があるらしい… ああ、素晴らしき日本文化よ。キミ達も国会議員を見習い給え。何せ多数決で選 ばれた『皆の代表』なので。だからある男も別の男もエラいんだよォ~~~んw コココ¥ 終わり良ければ全てヨシ。途中経過はどうでもヨシ。 大学:学生の知能なんてどうでもヨシ。カネが儲かる教室を巧みに運営シロ。 狸研:研究の詳細なんてどうでもヨシ。世間が驚く大論文を外国に発表シロ。 芳雄:学問の中身なんてどうでもヨシ。安易に教授になれる分野を専攻シロ。 学問なんて所詮は出世の道具。周囲に秀才っぽく見せ掛けられたらソレでヨシ。 社会的に高い地位、そして豪華で贅沢な暮らし。世間が羨む大学教授のポスト。 ソレさえ手に入れば学問そのものなんて洋梨よォ~~~ん。 よよよ、よ~~~しお。そやしノ~ベル賞が欲しいよォ~~~んんんwww シシシ¥
87 名前:132人目の素数さん mailto:sage [2016/07/13(水) 06:12:22.01 ID:QGZwhDi5.net] >>84 それはよく考えてみれば自明だと分かるはず
88 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/13(水) 07:45:35.43 ID:K/H8KF/H.net] >>446 >>447 そんな事は当たり前ですわ。こういう人を舐めた考え方が私は大嫌いなの であり、立腹したのでこの馬鹿板を徹底的に焼きます。日本人は人を、そ して『学問を』舐めてますよね。こういう芳雄的な態度は許さないので。 コレが正に『日本人の敗因』ですわ。 では作業を開始しますので。 ¥
89 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/13(水) 07:46:10.33 ID:K/H8KF/H.net] 日本人の躾けは『大人の都合』、その目的は威厳に屈服させる為: ある父親:クマが出没する山林に息子を放置、しかも嘘を吐いて保身。 別の父親:勉強の邪魔をして進路を妨害し、学歴を砕く。出世を強要。 ソレでも「親の行為は子供の為」という傲慢な常識を振り回す世間、しかも 「親を尊敬して大切に扱え」という無根拠な思想を押し付ける儒教文化。 お父さん、お母さんを大切にしましょう!!!ソレが世間体というモノ! ケケケ¥ 政治家も、お教授も、権力を振り回すのが大好きな低能人種: ある男:ボクは都民の為に湯河原で休んでるんだ。知事が信じられんのかっ! 別の男:オレは哲也の為に指導してやってるんだ。父親が信じられんのかっ! 上から目線で強弁すれば、自分の言い分は何でも通る国があるらしい… ああ、素晴らしき日本文化よ。キミ達も国会議員を見習い給え。何せ多数決で選 ばれた『皆の代表』なので。だからある男も別の男もエラいんだよォ~~~んw コココ¥ 終わり良ければ全てヨシ。途中経過はどうでもヨシ。 大学:学生の知能なんてどうでもヨシ。カネが儲かる教室を巧みに運営シロ。 狸研:研究の詳細なんてどうでもヨシ。世間が驚く大論文を外国に発表シロ。 芳雄:学問の中身なんてどうでもヨシ。安易に教授になれる分野を専攻シロ。 学問なんて所詮は出世の道具。周囲に秀才っぽく見せ掛けられたらソレでヨシ。 社会的に高い地位、そして豪華で贅沢な暮らし。世間が羨む大学教授のポスト。 ソレさえ手に入れば学問そのものなんて洋梨よォ~~~ん。 よよよ、よ~~~しお。そやしノ~ベル賞が欲しいよォ~~~んんんwww シシシ¥
90 名前:132人目の素数さん [2016/07/13(水) 11:22:22.91 ID:QGZwhDi5.net] どこの国の人間かは知らないが、外からぐちゃぐちゃ、夜中の4時に 二日連続で騒ぎやがって、迷惑だ。 ふざけた、迷惑行為をするチンピラはいい加減にしろ。
91 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/13(水) 11:37:08.92 ID:K/H8KF/H.net] 都知事選:知事に当選する為ならば、公約とか政策なんてどうでもヨロシ。 大学教育:経営が成立する為ならば、学生とか論文なんてどうでもヨロシ。 糞父芳雄:教授に昇進する為ならば、分野とか研究なんてどうでもヨロシ。 よよよ、よォ~~~しを。近視眼的で打算的だよォ~~~んんん。 ケケケ¥
92 名前:132人目の素数さん mailto:sage [2016/07/14(木) 04:14:42.74 ID:FCXA7LnS.net] >>79 >b>0のとき、m=2の場合は、p≡b?0 (mod m)であり、m>2の場合は >全てのmに対して、それぞれのrをb≠aを満たすように選択すること >により、p≡b-a?0となり、pを素数にすることができる。 間違っている。p≡b-a?0 (mod m) という条件により、ある整数kに対して p=mk+(b-a), (b-a)はmで割り切れない と表すことができる。右辺の mk+(b-a) は、どのようなkに対しても 常に素数となるわけではなく、適切なkに対してのみ素数となる。 一方で、p は n=p+2q を満たすように選ばなければならないので、特にn>p である。 よって、n>mk+(b-a) を満たすような限定された k の中で、mk+(b-a) が素数になる ものを選ばなければならない。そのような k が存在することは自明ではなく、 「(b-a)はmで割り切れない」という貧弱な条件だけでは全く証明できない。 というか、「(b-a)はmで割り切れない」からといって、「(b-a)とmは互いに素」とは限らない。 もし互いに素でないならば、mと(b-a)の最大公約数をdとするとき、d≠1 であり、かつ、 mk+(b-a) は常にdの倍数となる。よって、もし d が合成数なら、mk+(b-a) は決して素数になりえない。 この場合、この方針での証明は完全に失敗する。
93 名前:132人目の素数さん mailto:sage [2016/07/14(木) 04:18:24.88 ID:FCXA7LnS.net] >>79 >2q≡a (mod m), a>0 >n≡b (mod m) >とする。 >b=0の場合には、p+2q≡0 (mod m)となるから >p?0 (mod m)となる。 細かいことだが、ここも間違っている。n=3p, p=q, p は素数, m=p, a=2q, b=0 の場合は、 2<=m<=n-1 2q≡a (mod m), a>0 n≡b (mod m) b=0 p+2q≡0 (mod m) を全て満たすが、しかし p≡0 (mod m)であり、p?0 (mod m) になってない。 >b>0の場合には >p+2q≡b (mod m) >となるから >p≡b-a (mod m) >となることが必要となる。 これは b>0 だからこその条件ではない。b≦0 であっても p+2q≡b (mod m) であることに違いはないから、 b の如何によらず、どのみち p≡b-a (mod m) となること
94 名前:が必要である。 >n>5のnに対し、b=0の場合はp?0 (mod p)となり ここは完全に間違っている。明らかに p≡0 (mod p) である。 また、それ以前の議論によって p?0 (mod p) が導かれるようなこともない。 [] [ここ壊れてます]
95 名前:132人目の素数さん mailto:sage [2016/07/14(木) 06:51:03.13 ID:ZqWOI0BL.net] >>92 b<=0の場合に関しては何もいっていないので、私が書いた内容に誤りはない。 b<=0の場合も同じだというだけだ。 >ここは完全に間違っている。明らかに p≡0 (mod p) である。 ここの部分は、そちらが完全に間違っている。 b=0の場合には、n=p+2q≡0 (mod m)で、 2q≡a (mod m), a>0 p+a≡0 (mod m) だから、p?0 (mod m)となる。
96 名前:132人目の素数さん mailto:sage [2016/07/14(木) 14:02:17.07 ID:FCXA7LnS.net] >>93 >b=0の場合には、n=p+2q≡0 (mod m)で、 >2q≡a (mod m), a>0 >p+a≡0 (mod m) >だから、p?0 (mod m)となる。 問題外。2重に間違っている。まず、 本文には p?0 (mod m) などとは書いてない。 本文には p?0 (mod p) と書いてあるのだ。 となれば、君は本分でタイプミスをやらかしていたことになる。 p?0 (mod m) と書きたかったのに p?0 (mod p) と書いてしまったのだな。 これが1つ目の間違い。 そして、もし p?0 (mod m) と書きたかったのであれば、 それはそれで間違いとなる(これが2つ目の間違い)。 実際、>>93 で挙げた n=3p, p=q, p は素数, m=p, a=2q, b=0 の場合は、 p≡0 (mod m)であり、p?0 (mod m) になってない。 従って、いずれにしても君は間違っている。 話にならんね。
97 名前:132人目の素数さん mailto:sage [2016/07/14(木) 14:50:16.12 ID:gNhYmc1B.net] >>94 タイプミスに気づかなかった。 >n=3p, p=q, p は素数, m=p, a=2q, b=0 何が言いたいのかさっぱり分からない。 n=3pであるならば、p=qであり、 m=pとするならば、2q=2p≡a (mod p) しかいうことはできない。 わけの分からない内容で悦に入るのはやめた方がいい。
98 名前:132人目の素数さん mailto:sage [2016/07/14(木) 15:08:38.37 ID:FCXA7LnS.net] >>95 もう一度、きみの書き込みを再掲する。 >b=0の場合には、n=p+2q≡0 (mod m)で、 >2q≡a (mod m), a>0 >p+a≡0 (mod m) >だから、p?0 (mod m)となる。 これは君の書き込みであるが、これは間違っている。 n=3p, p=q, p は素数, m=p, a=2q, b=0 と置けば、 b=0 n=p+2q≡0 (mod m) 2q≡a (mod m), a>0 p+a≡0 (mod m) を全て満たすが、しかし p≡0 (mod m)であり、p?0 (mod m) になってない。 すなわち、君の書き込みは間違っている。
99 名前:132人目の素数さん mailto:sage [2016/07/14(木) 15:14:58.68 ID:lsrKIL1g.net] >>95 議論したいならコテハンつけて
100 名前:132人目の素数さん mailto:sage [2016/07/14(木) 16:48:05.98 ID:gNhYmc1B.net] >>96 m=pの場合には b=p+a≡a (mod p) でa>0としているから、b=0の場合にはm=pという前提が 成り立たないのではないのですか?
101 名前:132人目の素数さん mailto:sage [2016/07/14(木) 16:58:54.93 ID:FCXA7LnS.net] >>98 なんだコイツ。言ってることが意味不明。 n=3p, p=q, p は素数, m=p, a=2q, b=0 と置いたとき、実際に b=0 n=p+2q≡0 (mod m) 2q≡a (mod m), a>0 p+a≡0 (mod m) 及び p≡0 (mod m) が全て成り立っている。 実際に代入して確かめてみろよ。全て成り立ってるだろ。 お前の書き込みは間違ってるんだよ。 >m=pの場合には >b=p+a≡a (mod p) >でa>0としているから、 何が言いたいんだ? 0≡p+2p≡2p (mod p) は実際に成り立っているよ。 で?それが何?「a>0」としているからって、それがどうしたの? そもそも、合同式において、「a>0」という仮定は 何の意味も持たないことは理解してる? たとえば 0≡10 (mod 5) が成り立つけど、右辺の10は「10>0」を満たすが、左辺の0は「ゼロ」だよ。 お前が言ってるのはこういうことに過ぎない。右辺の10が「10>0」を 満たすからといって、だから何?
102 名前:132人目の素数さん mailto:sage [2016/07/15(金) 05:57:08.23 ID:Br1Y2H4K.net] ゴールドバッハ予想を証明するための定理を発見したかもしれません。 nを2以上の整数とするとき 2n=p+q となる素数p,qが存在する nが素数の場合には、p=q=nで成立する。 n=2の場合、p=q=2。 nが3以上の場合には、p=2とするとq=2(n-1)となり qが合成数となるから、pは3以上の素数となる。 2<p<n<qとしても一般性を失わない。 rを素数、、r<nとして それぞれのrに対して q=2n-p?0 (mod r) 2n?p (mod r) a(r,n)≡2n (mod r)とすると a(r,n)?p (mod r) 以下のような表①を考えます。 3≡0 (mod 3) 3≡3 (mod 5) 3≡3 (mod 7) 5≡2 (mod 3) 5≡0 (mod 5) 5≡5 (mod 7) 7≡1 (mod 3) 7≡2 (mod 5) 7≡0 (mod 7) 表①の剰余と、a(r,n)と一致する剰余には記号aと書くことにすると n=8のときは、3 5 7 |8| 9× 11 13 a(3,8)≡1 a(5,8)≡1 a(7,8)≡2 0 3 3 2 0 5 1a 2 0 と書くことにします。 n=20のときは、3 5 7 11 13 17 19 |20| 21× 23 27× 29 33× 35× 37 a(3,20)≡1 a(5,20)≡0 a(7,20)≡5, a(11,20)≡7, a(13,20)≡1, a(17,20)≡6, a(19,20)≡2 0 3 3 3 3 3 3 2 0a 5a 5 5 5 5 1a 2 0 7a 7 7 7 2 1 4 0 11 11 11 1a 3 6 2 0 13 13 2 2 3 6 4 0 17 1a 4 5a 8 6 2 0 n=21のときは、3 5 7 11 13 17 19 |21| 23 25× 29 31 35× 37 39× a(3,21)≡0 a(5,21)≡2 a(7,21)≡0, a(11,21)≡9, a(13,21)≡3, a(17,21)≡8, a(19,21)≡4 0a 3 3 3 3 3 3 2 0 5 5 5 5 5 1 2a 0a 7 7 7 7 2 1 4 0 11 11 11 1 3 6 2 0 13 13 2 2a 3 6 4 0 17 1 4 5 8 6 2 0
103 名前:132人目の素数さん [2016/07/15(金) 06:05:53.10 ID:Br1Y2H4K.net] >>100 の続き n=22のときは、3 5 7 11 13 17 19 |22| 25× 27× 31 33× 37 39× 41 a(3,22)≡2 a(5,22)≡4 a(7,22)≡2, a(11,22)≡0, a(13,22)≡5, a(17,22)≡10, a(19,22)≡6 0 3 3 3 3 3 3 2a 0 5 5 5 5 5 1 2 0 7 7 7 7 2a 1 4 0a11 11 11 1 3 6 2 0 13 13 2a 2 3 6 4 0 17 1 4a 5 8 6 2 0 となります。 ここでaの位置に注目すると、各行のaの列を適当に選択することにより、列にa となる数字を1つ以下にすることができるということが成り立っているように 考えられます。 それからはn=22まで検証しましたが、最終列にaは現れません。 数学的に厳密に定義することはできませんが、この定理らしきものが成り立っている とすると、ゴールドバッハ予想を証明することが可能になると思います。
104 名前:132人目の素数さん mailto:sage [2016/07/15(金) 06:17:40.96 ID:Br1Y2H4K.net] >>101 >それからはn=22まで検証しましたが、最終列にaは現れません。 最後の列はp1,p2,…,pm-1,0で0と奇数であり a(2n,pm)は全て2以上の偶数となるから、自明の内容でした。
105 名前:132人目の素数さん [2016/07/15(金) 06:31:46.20 ID:Br1Y2H4K.net] ~すんなと聞こえたが、何言ってか分からない。 ここに堂々と書けば(笑)
106 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 06:48:32.66 ID:jkeSCNS3.net] ¥ >232 :132人目の素数さん:2016/07/01(金) 13:34:39.39 ID:zLVRVGit > >>217 たんなる京大とプロ数学者じゃ全然話が違うだろ > 同列に書くあたり、ほんと、どうしようもないクソ京大コンプだな、じじい > >246 名前:132人目の素数さん :2016/07/01(金) 18:07:16.21 ID:/KsaK/zz > >>217 > >解ってると思うが、悪質なネット民は絶対に許さんのでナ。低能は低能だ > けで遊べや。ほんでや、頭の悪いアホが京大とかプロの数学者とか、そう > いうモンを話題にすんなや。解りもセンくせにいい加減な事を言うてや、 > ほんでプロに迷惑なんて掛けるなや。許さんのでナ。 > > > 本当のエリートは有象無象の言うことなど、ハナから眼中にない。 > アンタが有象無象の言うことが癇に障ってしかたがないのは、アンタ自身が > (アンタがヘドがでるほど嫌悪する)有象無象の一人に過ぎない証拠。 > >> 217 :¥ ◆2VB8wsVUoo :2016/07/01(金) 11:07:44.51 ID:Hb6rl5wG >> 解ってると思うが、悪質なネット民は絶対に許さんのでナ。低能は低能だ >> けで遊べや。ほんでや、頭の悪いアホが京大とかプロの数学者とか、そう >> いうモンを話題にすんなや。解りもセンくせにいい加減な事を言うてや、 >> ほんでプロに迷惑なんて掛けるなや。許さんのでナ。 >> >> そもそも他人のプライバシーなんかに興味を持つんじゃねェんだよ。こう >> いう匿名無責任糞板はケシカラン連中が跋扈してるやろ。そやし壊滅する >> まで焼くさかいナ。エエな。馬鹿は馬鹿だけで閉じて遊べや。京大を話題 >> になんてスナ。焼き払ってやる。アホは絶対に許さんのでナ。糞野郎共め。 >> >> ¥ >>
107 名前:132人目の素数さん mailto:sage [2016/07/15(金) 09:41:20.44 ID:P6HvMp8g.net] >>103 死ね
108 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 09:42:26.84 ID:jkeSCNS3.net] ¥ >232 :132人目の素数さん:2016/07/01(金) 13:34:39.39 ID:zLVRVGit > >>217 たんなる京大とプロ数学者じゃ全然話が違うだろ > 同列に書くあたり、ほんと、どうしようもないクソ京大コンプだな、じじい > >246 名前:132人目の素数さん :2016/07/01(金) 18:07:16.21 ID:/KsaK/zz > >>217 > >解ってると思うが、悪質なネット民は絶対に許さんのでナ。低能は低能だ > けで遊べや。ほんでや、頭の悪いアホが京大とかプロの数学者とか、そう > いうモンを話題にすんなや。解りもセンくせにいい加減な事を言うてや、 > ほんでプロに迷惑なんて掛けるなや。許さんのでナ。 > > > 本当のエリートは有象無象の言うことなど、ハナから眼中にない。 > アンタが有象無象の言うことが癇に障ってしかたがないのは、アンタ自身が > (アンタがヘドがでるほど嫌悪する)有象無象の一人に過ぎない証拠。 > >> 217 :¥ ◆2VB8wsVUoo :2016/07/01(金) 11:07:44.51 ID:Hb6rl5wG >> 解ってると思うが、悪質なネット民は絶対に許さんのでナ。低能は低能だ >> けで遊べや。ほんでや、頭の悪いアホが京大とかプロの数学者とか、そう >> いうモンを話題にすんなや。解りもセンくせにいい加減な事を言うてや、 >> ほんでプロに迷惑なんて掛けるなや。許さんのでナ。 >> >> そもそも他人のプライバシーなんかに興味を持つんじゃねェんだよ。こう >> いう匿名無責任糞板はケシカラン連中が跋扈してるやろ。そやし壊滅する >> まで焼くさかいナ。エエな。馬鹿は馬鹿だけで閉じて遊べや。京大を話題 >> になんてスナ。焼き払ってやる。アホは絶対に許さんのでナ。糞野郎共め。 >> >> ¥ >>
109 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:38:27.72 ID:jkeSCNS3.net] ¥
110 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:38:45.74 ID:jkeSCNS3.net] ¥
111 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:39:01.72 ID:jkeSCNS3.net] ¥
112 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:39:16.83 ID:jkeSCNS3.net] ¥
113 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:39:35.74 ID:jkeSCNS3.net] ¥
114 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:39:54.76 ID:jkeSCNS3.net] ¥
115 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:40:13.92 ID:jkeSCNS3.net] ¥
116 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:40:41.08 ID:jkeSCNS3.net] ¥
117 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:40:57.76 ID:jkeSCNS3.net] ¥
118 名前:¥ ◆2VB8wsVUoo mailto:sage [2016/07/15(金) 10:41:15.92 ID:jkeSCNS3.net] ¥
119 名前:132人目の素数さん mailto:sage [2016/07/15(金) 12:34:43.05 ID:Br1Y2H4K.net] >>105 匿名でなければものが言えないおまえが死ね
120 名前:132人目の素数さん mailto:sage [2016/07/15(金) 15:51:32.66 ID:P6HvMp8g.net] >>117 ブーメラン
121 名前:132人目の素数さん mailto:sage [2016/07/15(金) 16:06:25.50 ID:Br1Y2H4K.net] >>118 匿名は音声情報だから、地域でしか聞こえない無線放送のw
122 名前:132人目の素数さん mailto:sage [2016/07/15(金) 16:06:59.53 ID:Br1Y2H4K.net] >>119 どうでもいいが訂正 ×無線 ○有線
123 名前:tai [2016/07/16(土) 14:09:31.15 ID:s1Bl3iUJ.net] >>79 rの値が2個以上になるので m+kを素数とすることができる。 とはどういう計算なんでしょう
124 名前:tai [2016/07/16(土) 14:11:11.28 ID:s1Bl3iUJ.net] >>73 でした
125 名前:132人目の素数さん mailto:sage [2016/07/16(土) 14:29:40.75 ID:AgL7MXhM.net] >>121 pを素数にすることができるではなく、mの倍数でなくすることができるということです。 この証明は間違っています。
126 名前:132人目の素数さん [2016/07/16(土) 19:15:59.
] [ここ壊れてます]
127 名前:78 ID:AgL7MXhM.net mailto: ルジャンドル予想の証明を書きます。 例のごとく間違っているかもしれないことは、言うまでもありません。 kを整数とし、n^2<k<n(n+1)を満たすとし、以下の表を考えます。 左から1列目は、n^2に対して、上から2~n-1を法とした剰余を表し 2列目は、n^2+kに対して、上から2~n-1を法とした剰余を表しています。 n^2 n^2+k (n-2)^2 k+(n-2)^2 (mod n-(n-2)) … 9 k+9 (mod n-3) 4 k+4 (mod n-2) 1 k+1 (mod n-1) この表から、n^2+kがmを整数とし、2<=m<=n-1の倍数でないとするならば m(1),(m2),…,m(n-2)を整数として (k-(n-2)n) ≠ 2m(n-2) … (k-3n) ≠ (n-3)m(3) (k-2n) ≠ (n-2)m(2) (k-n) ≠ (n-1)m(1) が成り立つ。 このとき、 k ≠ 2m(n-2)+n(n-2) … k ≠ (n-3)m(3)+3n k ≠ (n-2)m(2)+2n k ≠ (n-1)m(1)+n となるから、a,bを整数としてbが 1<=b<=n-2 を満たすと仮定すると、 k≠(n-1)!a+bn…① が成り立つ。 kはn^2+1からn^2+n-1までn個存在するから周期がnである ①の式を満たすkは高々一つ存在する。 よって命題は示された。 [] [ここ壊れてます]
128 名前:132人目の素数さん mailto:sage [2016/07/16(土) 19:22:23.43 ID:AgL7MXhM.net] ①が成立しないからこれも間違いだった。
129 名前:132人目の素数さん mailto:sage [2016/07/16(土) 19:31:54.83 ID:AgL7MXhM.net] と思ったが?
130 名前:132人目の素数さん mailto:sage [2016/07/16(土) 20:12:51.68 ID:TqtJU3Cg.net] >>1 はコテなりトリップなりつけて個人が識別できるようにしてくれ
131 名前:132人目の素数さん mailto:sage [2016/07/16(土) 22:08:30.62 ID:AgL7MXhM.net] これはどこのサイトを見て書いているわけでもなく、自分で考えて書いているので 多々間違っている、正解が得られるか当然分からなし、数学上の未解決問題であるから 私が解けなくても、いたって普通のことである。 >>124 に誤りがあったので訂正する。最後の結論は間違っていたので途中まで。 kを整数とし、0<k<nを満たすとし、以下の表を考えます。 左から1列目は、n^2に対して、上から2~n-1を法とした剰余を表し 2列目は、n^2+kに対して、上から2~n-1を法とした剰余を表しています。 n^2 n^2+k (n-2)^2 k+(n-2)^2 (mod n-(n-2)) … 9 k+9 (mod n-3) 4 k+4 (mod n-2) 1 k+1 (mod n-1) この表から、mを整数、2<=m<=n-1を満たすとし、kがmの倍数でない とするならばm(1),m(2),…,m(n-2)を整数として k+(n-2)^2 ≠ 2m(n-2) … k+9 ≠ (n-3)m(3) k+4 ≠ (n-2)m(2) k+1 ≠ (n-1)m(1) このとき、 k ≠ 2m(n-2)-(n-2)^2 … k ≠ (n-3)m(3)-9 k ≠ (n-2)m(2)-4 k ≠ (n-1)m(1)-1
132 名前:132人目の素数さん mailto:sage [2016/07/16(土) 22:16:54.94 ID:AgL7MXhM.net] >>128 ×kがmの倍数 ○n^2+kがmの倍数
133 名前:132人目の素数さん mailto:sage [2016/07/17(日) 07:06:28.33 ID:5nyeyIeS.net] >>128 を訂正します。証明はできていません。 この表から、mを整数、2<=m<=n-1を満たすとし、n^2+kがmの倍数でない とするならばm(2),m(3),…,m(n-1)を整数として k ≠ 2m(2)-(n-2)^2 k ≠ 3m(3)-(n-3)^2 … k ≠ (n-1)m(n-1)-1 a,b(2),b(3),…,b(n-1)を整数とし b(a)≡-(n-a)^2 (mod a) 0<=b(a)<a とすると k ≠ 2m(2)+b(2) k ≠ 3m(3)+b(3) … k ≠ (n-1)m(n-1)+b(n-1)…① となる。 k ≠ 2m(2)+b(2) k ≠ 3m(3)+b(3) を満たすkは、rを整数として k ≠ 6r+b(2), 6r+b(2)+2, 6r+b(2)+4 k ≠ 6r+b(3), 6r+b(3)+3 ①を満たすkは、 k ≠ (n-1)!r+b(2), (n-1)!r+b(2)+2,…,(n-1)!r+b(2)+(n-1)!-2 k ≠ (n-1)!r+b(3), (n-1)!r+b(3)+3,…,(n-1)!r+b(3)+(n-1)!-3 … k ≠ (n-1)!r+b(n-1),(n-1)!r+b(n-1)+(n-1)!-(n-1) k<nの範囲では k ≠ b(2), b(2)+2,…,[(n-b(2))/2]*2 k ≠ b(3), b(3)+3,…,[(n-b(3))/3]*3 … k ≠ b(n-1)
134 名前:132人目の素数さん mailto:sage [2016/07/17(日) 08:05:51.01 ID:kkT3F84h.net] >>130 証明の真偽を判定する簡単な方法を紹介しよう。 ・この掲示板内で、 ・高校数学の手法のみを使って、 ・高々2,3レスという短さで証明できるようなゴミは、 ・誰が判定するまでもなく、自動的に間違っている。 この手の未解決問題がそんなに簡単に証明できるわけがない。 1000レス使ってやっと証明が終わるくらいの規模になってから来いや。
135 名前:132人目の素数さん mailto:sage [2016/07/17(日) 17:54:47.72 ID:5nyeyIeS.net] >>130 >k ≠ b(2), b(2)+2,…,[(n-b(2))/2]*2 >k ≠ b(3), b(3)+3,…,[(n-b(3))/3]*3 を以下のように訂正します。 k ≠ b(2), b(2)+2,…,[(n-b(2)-1)/2]*2 k ≠ b(3), b(3)+3,…,[(n-b(3)-1)/3]*3
136 名前:132人目の素数さん mailto:sage [2016/09/18(日) 22:08:00.81 ID:YkKmzcZv.net] >>67 俺垂れ流し書いてた奴だけど、>>1 じゃないし、このスレ初めて見たし、 トポロジカルインデックス買ったし、無駄ではなかったよ
137 名前:132人目の素数さん mailto:sage [2016/09/19(月) 02:41:18.35 ID:r4U09zv3.net] >>133 良かった 厳密じゃないけど内容のある数学の楽しさを知ってくれたら嬉しい
138 名前:132人目の素数さん mailto:sage [2016/09/19(月) 08:53:49.70 ID:qth1LSU4.net] >>135 うん。ありがとうございます
139 名前:132人目の素数さん [2017/06/20(火) 17:20:36.31 ID:4I6oLgNY.net] 苗は爺
140 名前:¥ mailto:sage [2017/06/20(火) 17:52:09.17 ID:HcN8kMcD.net] ¥
141 名前:¥ mailto:sage [2017/06/20(火) 17:52:30.49 ID:HcN8kMcD.net] ¥
142 名前:¥ mailto:sage [2017/06/20(火) 17:52:50.53 ID:HcN8kMcD.net] ¥
143 名前:¥ mailto:sage [2017/06/20(火) 17:53:10.50 ID:HcN8kMcD.net] ¥
144 名前:¥ mailto:sage [2017/06/20(火) 17:53:30.37 ID:HcN8kMcD.net] ¥
145 名前:¥ mailto:sage [2017/06/20(火) 17:53:49.64 ID:HcN8kMcD.net] ¥
146 名前:¥ mailto:sage [2017/06/20(火) 17:54:11.59 ID:HcN8kMcD.net] ¥
147 名前:¥ mailto:sage [2017/06/20(火) 17:54:31.09 ID:HcN8kMcD.net] ¥
148 名前:¥ mailto:sage [2017/06/20(火) 17:54:51.29 ID:HcN8kMcD.net] ¥
149 名前:132人目の素数さん mailto:sage [2017/07/21(金) 22:43:23.91 ID:TROq1Jv/.net] ☆ 日本人の婚姻数と出生数を増やしましょう。そのためには、☆ ① 公的年金と生活保護を段階的に廃止して、満18歳以上の日本人に、 ベーシックインカムの導入は必須です。月額約60000円位ならば、廃止すれば 財源的には可能です。ベーシックインカム、でぜひググってみてください。 ② 人工子宮は、既に完成しています。独身でも自分の赤ちゃんが欲しい方々へ。 人工子宮、でぜひググってみてください。日本のために、お願い致します。☆☆