- 45 名前:132人目の素数さん mailto:sage [2016/01/16(土) 17:05:54.42 ID:AaUSB/SH.net]
- >>3-4
(>>41の続き) >そこで, {x_n} を商集合 X(r) の代表元とする. すると, rに対して, rに収束する実数列を考えることで, >f({r_n})={x_n} なるような実数列 {r_n}∈R^N の全体を考えることが出来る. >そこで, {x_n} に対して f({r_n})={x_n} なる実数列 {r_n}∈R^N の全体を f^{-1}({x_n}) とする. >このようにして f^{-1}({x_n}) を構成することは, 任意の実数列 {x_n}∈R^N/〜 に対して出来る. >そのようなことに注意して, R^N に選択公理を適用し, R^N のすべての元が一直線状に並んでいると見なす. >R^N/〜 のすべての元についても同様に選択公理を適用し, そのすべての元が一直線状に並んでいると見なす. >すると, 直積 R^N×R^N/〜 を xy平面のような平面と見なせる. このような平面上で, x軸に平行な複数の, >y軸に垂直であるような点線を引くような, 操作を行うことである. >これが, 代表系を袋に蓄えておくことの, 大体の幾何的な意味である.」 >任意の実数列 s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表 >「としてのコーシー列」 r=r(s) を丁度一つ取り出せる訳だ. sとrとがそこから先ずっと一致する番号 >を sの決定番号 と呼び,d=d(s) と記す. つまり「sの部分列」 s_d,s_{d+1},s_{d+2}, … を知れば >「これは無限列だから,」 sの類の代表r は決められる. 更に,何らかの事情によりdが知らされていなくても, >ある D≧d について「sの部分列」 s_{D+1}, s_{D+2}, s_{D+3}, … が知らされたとするならば, >「同様にこれも無限列だから,」それだけの情報で既に「コーシー列」 r=r(s)は取り出せる. >したがって「sの決定番号」 d=d(s) も決まり, 結局s_d(実は s_d, s_{d+1}, …, s_D ごっそり)が決められる >ことに注意しよう.
|

|