[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/10 23:57 / Filesize : 507 KB / Number-of Response : 794
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む18



44 名前:132人目の素数さん mailto:sage [2016/01/16(土) 17:04:40.01 ID:AaUSB/SH.net]
>>3-4
(>>39の続き)
>「さて本題に戻るが」, 但し「ここでは」もっときびしい同値関係を使う. 実数列の集合 R^Nを考える.
>s=(s_1, s_2, s_3, …),s'=(s'_1, s'_2, s'_3,…)∈R^Nは,ある番号nから
>先のしっぽ「いわゆる第n項」が一致する. 「換言すれば」∃n_0:n≧n_0 → s_n=s'_n のとき,
>同値「関係〜を」s〜s' と定義しよう(いわばコーシーのべったり版).
>「ここに, 任意の, 或る実数rに収束する有理コーシー列 {r_n},{s_n}∈X(r)⊂X について,
>或る番号n_0が存在して, n≧n_0 のとき s_n=s'_n なることに注意しよう.」
>念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致する
>なら,sとs"は2015番目から先一致する. 〜は R^N を類別するが,各類から代表を選び,
>代表系を袋に蓄えておく. 幾何的には商射影 R^N → R^N/〜の切断を選んだことになる.
>「換言すると次のようになる. 商射影 R^N → R^N/〜 をfとする.
>f:R^N → R^N/〜 は全単射である. 実数列 {x_n}∈R^N/〜 を任意に取る. すると, {x_n}は或る実数
>rに収束するコーシー列である. rに収束するコーシー列の全体を X(r) とする. すると, X(r)⊂R^N/〜 であり,
>X(r) は同値関係〜による商集合として扱える. X(r) を同値関係〜による商集合と見なすと,
>rは商集合 X(r) の代表元として扱える. rは {x_n} に対して定まったから,
>これはコーシー列 {x_n} を商集合 X(r) の代表元として扱うことと同じである.






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<507KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef