[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/10 23:57 / Filesize : 507 KB / Number-of Response : 794
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む18



298 名前:132人目の素数さん [2016/02/28(日) 16:08:03.00 ID:TRx0RPe2.net]
>>270
> その場合はVを根とする既約方程式はV−q=0だけで、
> V´などは存在せず、他の根を表わすf(V´)に代入すべき V´が
> ないのだから、補題4が成立しようがない。
もしかしてお前は『A⇒B』という命題PにおいてAが偽だったとき、
Bの真偽によらずPが真となることを知らないのか?

> >>170
> 補助定理IV
> Vについての方程式を作って,その(左辺の)既約因数をとり,Vが既約方程式の根となったとしよう.
> その既約方程式の根をV,V',V'',・・・とし, a=f(V)が与えられた方程式の根とすれば,f(V')も同じく与えられた方程式の根となる.
A:『Vを根にもつ既約方程式が他の根V', V'',・・・を持ち、かつa=f(V)が与えられた方程式の根である』
B:『f(V'), f(V''),・・・も同じく与えられた方程式の根となる』
>>170が言っているのは命題A⇒Bだ。

既約方程式がV以外に根を持たない場合、Aは偽となり、命題Pは真となる。
よって有理根をもつ場合でも補題4は成立している。

これは実際のところ些細な問題だ。
与えられた方程式が有理根をもつ場合はあらかじめ分解しておき
有理根をもたない既約方程式を考察すれば十分だからだ。

なお>>170を読むかぎり与えられた方程式は既約の場合に限定されていない。
> その(左辺の)既約因数をとり
とあるので、最初につくるVの方程式は既約でなければならないとも書いていない。

>>170の記載以前に、与えられた方程式を既約の場合に限定すると書いてあるのか?
本を持っていないので俺は知らないが、たとえそう限定されていたにせよ、
与えられた方程式が有理根をもつ場合でも>>170の補題4は成立している、というのが俺の主張だ。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<507KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef