[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 2ch.scのread.cgiへ]
Update time : 04/10 23:57 / Filesize : 507 KB / Number-of Response : 794
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む18



277 名前:132人目の素数さん mailto:sage [2016/02/28(日) 00:08:26.30 ID:TRx0RPe2.net]
>>250
> 与えられた方程式が有理数を根とする可約方程式なら、
> 根で作る有理式Vの値は有理数になってしまうわけで、
> Vを根とする既約方程式はV−q=0という式しか作れない。
> この方程式の値はVだけでV´は存在しないから、
> 結局、他の根をf(V´)という式で表わすことはできないのである。
>
> だから与えられた方程式が有理数を根とする可約方程式なら補題4は
> 成立しないわけで、私の言っていることは間違いではないのである。

その論理が間違いだと言っている。

>>170
> 補助定理IV
> Vについての方程式を作って,その(左辺の)既約因数をとり,Vが既約方程式の根となったとしよう.
> その既約方程式の根をV,V',V'',・・・とし, a=f(V)が与えられた方程式の根とすれば,f(V')も同じく与えられた方程式の根となる.

補助定理IVは
『Vを根とする既約方程式がV',V'',・・を も つ な ら ば、
f(V'),f(V''),・・・も与えられた方程式の根である』と言っているのだ。

既約方程式V-q=0に他の根V',V'',・・が存在しないからと言って補助定理IVが破れるわけではない。
言い換えると、補助定理IVは
『根Vを持つ既約方程式が存在するとき、その方程式には他の根V',V'',・・が必ず存在し、
与えられた方程式の す べ て の 根 はV',V'',・・・によって表される』
と言っているのでは な い 。

実際、与えられた方程式が有理根を2つもつ場合(重解は除く)、
>>170の構成方法に従えば
(V-q1)*(V-q2)=0というVの可約方程式が得られ、その(左辺の)既約因数をとれば既約方程式が2つ作れる。
上の2つの既約方程式が根を置換したものであることに注意すると、
根a,bはf(V),f(V')という式で表されることが分かる。

>>170をよく読め。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<507KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef