[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 12/31 12:29 / Filesize : 498 KB / Number-of Response : 645
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜11 ガロア理論を読む14



419 名前:で、WがPとQという2点以上を含むとすれば、
Pだけを共通解とする多項式の集合としてのイデアルJは、明らかにWを共通解とする多項式の集合としてのイデアルI(W)を含んでいるから、I(W)は極大にはなれないからだ。

次に、素イデアルのほう。これは、「Wが図形として既約であることと、I(W)が素イデアルであることが同値」というふうに現れる。Wが既約というのは、Wがイデアルの共通解として定義される図形2つに分解されない、ということをいう。
別の言い方をすれば、WがW1とW2の合併で表されるならW1とW2は一方が他方を含む、ということ。既約じゃないものを可約と言って、可約な例を見るほうが話が早いかもしれない。
例えば、h(x, y)=xyという多項式とすると、h(x, y)=0の解は、xy=0だから、直線x=0と直線y=0を合併したものとなる。これは、多項式h1(x, y)=xの解と、多項式h2(x, y)=yの解をそれぞれ意味するから、h(x, y)=xyの解集合は2つの図形(直線x=0と直線y=0)に分解してしまう。
こういうのは可約であって、既約ではない、ということ。そして、「これ以上、図形が分解しない」ような解集合Wと「素イデアル」が対応する、ということになるのである。これは、まさに整数における素数に対応する性質と考えられるだろう。

ここまでくると、極大イデアルと素イデアルの違い(それは、整数のイデアルでは違いがなかった)がはっきりしてくる。極大イデアルは空間の1点1点に対応するもので、素イデアルは「これ以上、分解しない図形」に対応するもの、ということなのだ。
(1点も「これ以上分解しない図形」なので、当然、極大イデアルは素イデアルの一種となることもわかる)。

つづく
[]
[ここ壊れてます]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<498KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef