[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/13 18:38 / Filesize : 286 KB / Number-of Response : 1042
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

面白い問題おしえて〜な 二十一問目



327 名前:132人目の素数さん mailto:sage [2015/09/02(水) 17:36:14.61 ID:XNWv0rxl.net]
d+e,e-dがともにpの倍数であることからd,eはpの倍数。
これとa+d,b+d,c+dのうち2つはpの倍数であることから
a,b,cのうち2つはpの倍数。
これとa+c,b+cのうち一方がpの倍数であることからcはpの倍数。
さらにa,bがともにpの倍数とするとSの元に共通因数pが
あることになり矛盾するので、a,bのうち一方はpの倍数でない。

以下、aがpの倍数でないとする。
bがpの倍数でないとしても同様なのでこの場合は省略。
c,d,eはpの倍数でありaはpの倍数でないから、
a+b,a+c,a+d,a+eはpの倍数でないので2の冪乗である。
よってa+c,a+d,a+eは4の倍数でありe-c,e-dは4の倍数となる。

ここでc+eとd+eのうち一方が4の倍数と仮定すると、
(e-c)+(c+e)=(e-d)+(d+e)=2eは4の倍数となりeは偶数となる。
これとa+eが2の冪乗であることからaは偶数。
続いてb,c,dも偶数であることがいえる。
よってSの元に共通因数2があることになり矛盾。
したがってc+eとd+eはどちらも4の倍数ではない。

e-cとe-dが偶数であることからc+eとd+eはともに偶数である。
よって整数s,t(0<s<t)を用いて
c+e=2p^s
d+e=2p^t
と表せるが、
p(c+e)=2p^(s+1)≦2p^t=d+e<2eとなり矛盾。
したがって、条件を満たすような集合Sは存在しない。

ちなみに4つの場合は1,5,7,11のような例がある。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<286KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef