[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 01:04 / Filesize : 232 KB / Number-of Response : 1033
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数学・幾何学・解析学スレッド



586 名前:kyrie ◆Debha1lQgc mailto:sage [2011/12/08(木) 17:35:58.54 .net]
哲学板から来ました。あっちでは有名なコテです。
みなさんレベルが高いですね。あるいは、みなさんの間のレベルの
激しい差異が、低い僕には計りかねてるだけでしょうが。
 初歩的な質問をお許しください。
リーマンの、幾何学の基礎をなす仮説についてを読んでいるのですが、
 線素の始点から等距離にある点の全体が作る(n-1)次の多様体の表現において、
その表現にはそれらの多様体を区別する場所の連続関数を求めればよい、とあります。
この関数は始点から全ての方向に向かって常に増大するか又は減少するかなのですが、
ここでは増大するものと仮定する、とあります。
 したがって始点において極小となるのですが、ここで質問があります。
リーマンは「故にその一次及び二次微分係数が存在すれば、一次微分は零となり
二次微分は負にならぬが、更にそれが常に整数であると仮定する」といってますが
一次微分とはgradのことですか?二次微分とはラプラシアンのことですか?
直観的には原点から単調増加する曲線が様々に伸びてる感じでしょうか。








[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<232KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef