[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/12 01:04 / Filesize : 232 KB / Number-of Response : 1033
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数学・幾何学・解析学スレッド



310 名前:132人目の素数さん [2010/12/21(火) 23:08:53 .net]
線形代数の分野での質問です
行列のn乗の有効利用としてのペル方程式の整数解を全て求められるはなぜでしょうか?

例えば具体的には x^2-3y^2=1 というペル方程式を満たし
連続する三つの整数解より
(2,-1)→(1,0)→(2,1) ⇒ A(2,-1)=(1,0),A(1,0)=(2,1)
これよりある二次正方行列Aを求め,ある整数解にこの一次変換を作用させると
次の整数解が得られることに着目して,A^nを求め
一般解(x_n,y_n)=A^n(2,±1)(n:自然数)を得る

実際に代入してみると当てずっぽうでは得られないような解も簡単に得られ
この不定方程式を確かに満たすようです。
非常にエレガントに行列が応用されているように感じるのですが
なぜ行列が出てくるのかの原理的な部分や解が網羅される理由等まったくわかりせん
色々やってみて今わかったことは
・行列の表す一次変換に対して満たすべき不定方程式である双曲線は一種の不動曲線
・行列の導出に使う三つの整数解は曲線上で隣接・連続していなければならない
ぐらいです…
詳しいことを知っている方がいらっしゃれば原理等お願いします







[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<232KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef